
AD-A016 662

A RESEARCH PROGRAM IN COMPUTER TECHNOLOGY

University of Southern California

SPrepared for:

4Defense Advanced Research Projects Agency

September 1975

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

. - -m In.. S m • m n •• m ••• • •• • •

311131
V ARPA ORDER NO. 2223

V ISJ/SR-75-3

ANNUAL TECHNICAL REPORT

M'ay 1974 - June 1975

-------------------- A R esearch P ro g ra m

in Computer Technology

pr-pc-red for the

Advanced Re,.earch Projects Agency

IN'i

-Y-

NATIONAL TECHNICAL
INFORMATION SERVICE

US M~sl~oCo CO-1ec.
So.nv,Id, VA 2 215,

INl:()RA DON S(.iENCE~S INS7ITLITIE

UI NYLSITY 01 SolI Wii RX '*I.I)\.1(1~ V I

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Enteted)

r REPORT DOCUMEhTATION PAGE READ INSTRUCTIONS
REPORT__ DOCU_ E1_TATIONPAGE_ BEFORE COMPLETING FORM

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENTS CATALOG NUMBER

ISI/SR-75-3
4 TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Annual Technical Report
A Research Program in Computer Technology, May 1974 - June 1975
Annual Technical Report, May 1974-May 1975. 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(&) 8. CONTRACT OR GRANT NUMBCR(a)

ISI Research staft DAHC 15 72 C 0308

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

USC/Information Sciences Insitute APEA & WORK UNIT NUMBERS

4676 Admiralty Way ARPA Order #2223
Marina del Rey, CA 90291 Program Code 3D30 & 3P10

11. CONTFJLL NGOFFICC NAME AND ADDRESS 12. REPORT DATE

Def.-nse Advanced Research Projects /..gency September 1975
1400 Wilson Blvd. 13. NUMBER OF PAGES

Arlington, _VA 22209
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 1.SECURITY CLASS. (of thi report)

-- - - -Unclassified

ISa. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

I 16 DISTRIBUTION STATEMENT (of this Report)

This document is approved for public release and sale; distribution unlimited.

17. D;STRIBUTION STATEMENT (of the abstract entered In Block 20, It different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveree side If necessary and Identify by block number)

1: interactive theorem proving, lemma generator, Pascal, program correctness, program
verification, Reduce, symbolic executor, verification condition.

2: ARPANET, control memory, microprogrammed processor, microprogramming,
microprogramming language, microvisor, MLP-900, operating systems, -esource sharing
TENEX, time sharing, writable control memory. (OVER)

20. ABSTRACT (Continue on reveree aide if neceeary snd Identify by block number)

This report summarizes the research performed by USC/Information Sciences Institute from
1,' May 1974 to 30 June 1975. The research is aimed at applying computer science and
technology to problem areas of high DoD/militar, impact. The ISI program consists of
eight re,.".,-rch areas: Program Verification- logical proof of program vaiidity; Programmir
Research Insrument - development of a major time-shared microprogramming facility;

Automatic Programming - the study of acquiring and using problem knowledge for program
generation; rrotectron Analysis - methods of assessing the viability of security (OVER)

DD I JAN 73 1473 EDITION O1 I NOV 65 IS OBSOLETE . UNCLASSIFIED
I 0 SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

--•ii4I2

UNCLASSIFIED
SIECUR .!CLASSIFICATION OF THIS PAGE('Whoe Data Ente,.d)

19. KEY WORDS (continued)

3: automatic programming, domain-independent interactive system, natural !ang,,age,
nonprocedural language, nonprofessional computer users, problem solving, problem
specification, process transformation, world knowledge.

4: access control, computer security, encapsulation, error analysis, error-dri,.en eval-
uation, error patterns, evaluation methods, protection mechanisms, softyare security,
verification.

5: computer terminals, interactive message service, office automation, nonprofessional
computer users, terminal-based message service.

6: computer network, digital voice communication, network conferencing, packet-
switched networks, secure voice transmission, signal processing, speech processing,
vocoding.

7: document printing capability, network terminal, text printing, Xerox Graphics Printer
8: ARPANET interface, computer network, KA/KI, PDP-1 0, PDP-1 1/40, resource

aliocation, TENEX, user quotas.

20. ABSTRACT (continued)

mechanisms of operating systems; Information Automation - development of a user-oriented
message service for large scale military requirements; Network Secure Communication -

work on low-bandwidth, secure voice transmission using an asynchronous packet-switched
network, Special Projects - primarily further development of Xerox Graphics Printer
facilities; ARPANET TENEX Service - operation of TENEX service and continuing
development of advanced support equipment.

i

}I

UNCLASSIFIED
SECURtITY CLASSIFICATION Or THIS PAGE(47I. Dats Entered)

---~-4

IRPA ORDIiR NO. 2223

k'S! SR-_75_-

ANNUAL TECHNICAL REPORT

May 1974 -June 1975

i A Research Program

. in Computer Technology

'- prepored for the

Advanced Research Projects Agency

.cEffective date of contract

y. 17 May 1972

' "Contract expiration date

30 June 1975

Amoun of contract

17,661,344 0

Principal irnvestivator

Kei',h W. Uncapher
(13) 8 22- 1511

Co-principal inveshiator

Thomas 0. Ellis
(213) 922-1511

W 1I III 1?. A11 N' 11Ii . I II

-H T 1', Rr EARL H IS SUPPORTED U~y THE ADV'ANCED Q FSEARCH PrOJECTS A,. N," I INlE'R I ONTRACT NO CIAHC 15 "72 C 0O10'A ARrA ORDE R

%'0 2223 PROG-RAM CODE NO 3D30 AND 3P10 ,

VIFWS AND CONCLUSIONS CONTAINr'O IN THIS STUDY ARE THIF AUTHOR S AND S14OULD NOI 917 INTFR')REIFO AS RI7PRESENTING THF

~-4f r1c IAL OPINION OR POLICY OF ARrPA THE U) S GOVFRNMENT OR ANY OTHFR PEaRSON OR AGENCY CONNECTED0 WITH THEM *

[)O(0001f-i NIT PPROit-() FOF? rI,I 'C RFLrASF AND SAt F" DISI RIBC'TION IS UNLIMITED

PERSONNEL

Research Staff: Robert M. Balzer Systenm Staff. Alan E. Algustyniak
Raymond Bates R. Jac que Bruninga
Richard Bisbey 11 George W. Diet rich
Thomas L Boynton Glen W. Gauthier

Jim Cariutedt Donali R. Lovelace
Stephen L. Casner Raymond L Mason
Danny Cohen Marion McKinley Jr.
Martin,'. Cohen William H. Moore
E. Randolph Cole Vernon W. Reynolds
Stephen D. Crocker Dale S. Russell
Ronald L. Currier
Thomas 0. Ellis Support Staff: Robert Blechen
Lawrence M. Fagar, Ralph W. Caldwell
Louis Gallenson Wanda N. Canillas
Joel Coldbe'rg Dale M. Chase
Neil M. Goldman Jeannette Christen~sen
Norton R. Green feld Kathie Cole grove
John F. Heafner Nancy Dechter
James Koda Oralio E. Garza
Ralph L. iLonrlon Judy Gusta fson
Richard C. Mandell Patricia A. liagedorn
David R. Musser Delia A. Ileilig
Donald R. Oestreicher Chloe HoIg
Robert Parker Rose L. Kattlove
Paul Raveling Kyle P. Lemmons
Jeff Rot henberg G. Nelson Lucas
Walter R. Ryder Jack M. Mann
Robert HI. Stotz Katie Patterson

Ron Tugender Betty RandallIKeith W. Uncapher Rennie Simpson
Dono Van-Mierop Nancy Travis
John J. Vittal Deborah C. Williams
David S. Wile

Research Assistants: John K. Kast ner

Consultants: Nancy L. Bryan Donald S. Lynn
Gerald J. PopeAt .Tarry Miller

David Wilczynski

6 Martin D. Yonke

itI

.. iw

iii

CONTENTS

Abstract v
Executive Overview vii

1. Program Verification I

2. Programming Research Instrument 14

3. Automatic Programming 24

4. Protection Analysis 34

5. Information Automation 42

j 6. Network Secure Communication 53

7. Special ProJects 66

8. ARPANET I ENEX Service 73

Publications 79

Colloquia 81

Doctoral Theses 84

*

- -'_-2 ,,, ' . - -

V

/BSTR/CT

This report summarizes the research performed by USC/Information Sciences
Institute from 17 May 1974 to 30 June 1975. The research is aimed at applying

computer science and technology to problem areas of high DoD/miitary impact.

The ISI program consists of eight research areas: Program Verification--logical
proof of program validity; Programming Research Instrument--development of a major

time-shared microprogramming facility; Automatic Programming--the study of acquiring
and Using problem knowledge for program generation; Protec.tion /nalysis--method&. of
assessing the viability of security mechanisms of operating systems; Information
Automation--development of a user-oriented message service for large-scale military
requirements; Network Secure Communication- -work on low-bandwidth, secure voice

transmission using an asynchronous packet-switched network; Special Projects--further
development of Xerox Graphics Printer facilities; and /ARP/INE' TENEX
Service--operation of TENEX service and continuing development of advanced support
equipment.

vii

EXECUTIVE OVERVIEW

The Information Sciences Institute (ISI), a research unit of the University of Southern
California's School of Engineering, was formed in May 1972 to perform research in the
fieds of computer and communications sciences with an emphas's on systems and
applications. The Institute, Iccated off-campus, has sufficient autonomy within the
University structure to assure it the freedom required to identify and engage in

significant research programs.

A close relationship is maintained with USC academic programs through active
cooperation among the Institute, the School of Engineering, the Department of Electrical
Engineering, arid the Computer Science Department. Ph.D. thesis supervision is an
integral part of ISI programs, as is active participation of research assistants supporting

ISI projects. Also, participating faculty and graduate students from other departments
provide interdisciplinary capabilities for G91 projects.

The unique,-ess of ;SI is expressed in the following objectives defined at its
founding:

* A major university-based computer science research center.

* A center with a largely full-time staff of researchers, augmented by
graduate students and faculty.

* A center which possesses a unique blend of basic research talent and
application and system expertise. The last two attributes are of special
significance to the application of computer science and technology to key
military problems.

0 A university-based research center with strong active ties to the
U.S. military community and a strong leadership role in identifying key

computer R&D requirements in support of long-term military needs.

The Institute is structured to provide research and development capability at the
system level--often required to assure an understanding of reai problems and to

provide useful solutions in transferable form. The managemt it structure is such that
virtually any researcher is known by the IPTO Director and Program Managers. Project

viii

leaders share visibly in the responsibility for the conduct of each project and for the
quality and impact of the research. At the end of the third year of operation, the
full-time professional research staif numbers 37. The total number of ISI
employees--including full-time research staff, participating faculty and graduate
students, and support personnel--is 78.

The activitie3 of ISI's eight major areas of research and associated support projects
are summarizcr briefly below. Some of the research projects reported in this
docL.ient are discrete activities in themselves; others can be seen as parts of a larger
whoie. For example, Program Verification, Automatic Programmng, and the Programming
Research Instrument projects should be considered as individual parts of an overall
research effort in Programming Methodoiogy; Information Automation, Network Secure
Communication, and Special Projects are linked elements of a major investigation into
Network Communications Technology. These mutual interdependencies among the
va-i,.us projects at ISI contribute largely to the fruitfulness of the Institute's research

activities.

Program Verification. The goal of program verification research at ISI is to

develop an effective program verification system for proving that computer programs
are consistent with precisely stated detailed specifications of what the programs are
intended to do. The system is expected to replace significant parts of testing in
current software development, and will also provide important tools for judging the
success of nc-w programming language 6esigns, new programming methodologies, and
new detailed specification techniques. Already running at ISI is an inital, experimental
version of an interactive program verification system based on the conventional
inductive assertion method. The design philosophy is to provide automatic assistance
for the verification process where practical, and otherwise to rely on human interaction.
The system has verified numerous example programs. New capabilities and extensions
are proposed which will permit the verification of a far wider class of programs than is
now possible. The eventual impact will be an increase in the quality of software with
an accompanying decrease in the cost of producing high-quality software.

Programming Research Instrument. This project has completed a highly reliable

interactive microprogramming facility lo be used as a general-purpose emulation
laboratory for creating, manipulatirg, and debugging arbitrary computer architectures
and high-level language processors. It consists of a powerful sharable
microprogrammable CPU (the MLP) closely coupled to a TENEX system and appropriate
software to allow interactive access to, and control of, the environment to be emulated
via the ARPANET. The PRIM project personnel will integrate PRiM into the NSW
architecture and aid NSW users as well as ;, veral other military or laboratory users in

their introduction to and use of this facility.

I A

ix

Automatic Programming. The major effort of the Automatic P, ooramming project

is simply to allow users who are not computer programmers to functionally specify their

application directly to a computer system, with the system transforming this input into a

precise functional specification of the application. This system is intended to be both

independent of ary particular problem domain and able to deal with "loose" (i.e.,

incomplete, inconsistent, etc.) problem-oriented descriptions of a domain through a

dialogue with the user. From this dialogue the system can acquire the "physics" (the

objects, laws, relationships, etc.) of the loosely-defined domain, structure it, and use it

iderstand further communication and finally to write a program to accomplish the

L s tasks. The system is being developed in the context of a (simplified) real-world

problem, i.e., the militarily significant domain of first-level message distribution. It is

currently able to acquire a domain description from the problem statement. The project

was termir.ated at the rnd of the reporting period.

Pr -,cction Alnalysis. The goal of this project is to develop efficient techniques and

semiautomated tools for detecting in operating systems various types of protection

errors, i.e., errors that allow the systems to be compromised. The approach is

empirical, based on the observations that (j) protection errors fall into a limited number

of distinct classes and (2) "error patterns" representing the classes are effective

criteria for finding the errors themselves. The method is to collect a data base of

known errors. use it to determine the error classes, and (for each class) generate the

appropriate error pattern and search algorithm. To date, errors from a variety of

systems have been collected and a prototype package for finding errors of a single

class has been built. The project proposes to extend the set of error c:asses and to

provide packages for finding twelve different classes of errors.

Information Automation. The Information Automation project has a dual goal: 1) to

develop the technology for providing on-line computer services directly to untrained

users and 2) to develop a secure, on-line, interactive writer-to-reader message service

for the military community. Such an on-line message service, new to the military,

provides interactive assistance for formal messages from the initial draft preparation

through coordination, transmission, and distribution. In addition, it will provide informal

secure "off-the-record" communication without the need for face-to-face meetingsc. The

message service is being developed in phases: the first addresses message preparation,

the second will provide message delivery and reception, the third is concerned with

debugging and test preparation, and the fourth is an operational test in a real military

environment. Phase one is currently underway. A set of reports describing the design

approach was produced in the fall of 1974 and an informal design was presented in

January. Coding of the message preparation system is now in progress. As a tool to

assist the system designer, a command language protocol analysis was developed and

tested.

x

Network Secure Communication. The major objective of ARPA's Network Secure
Communication project is to develop secure, high-quality, low-bandwidth, real-time,
two-way digital voice communication over packet-switched computer communication
networks. This kind of communication is a very high priority military goal for all levels
of command and control activities. ISI's role in this effort is to continue developing the
Network Voice Protocol required for communication of coded speech over a
packet-switched network in real-time; to develop on-line voice conferencing capabilities;
to continue implementation of the PDPI /SPS41 system for real-time LPC vocoding; and
to develop dynam;c off-line voice systems for storage and retrieval of voice files.
During the recent months the ISI NSC project worked on (1) irproving the qualiiy of the
real-time LPC system, implemented on the PDP-i1/SPS41 system, (2) working toward
getting the SPS hardware to be more reliable at ISI, and all the other ARPA sites, (3)
modifying the existing POP-1i operating system ("ELF") in order to achieve an efficient
operational state, and (4) issuing the exact definition of the network voice conferencing
protocol (NVCP).

Special Projects. The major Special Projects effort for the current year was the
further development of ISI's and ARPA's Xerox Graphics Printer (XGP), a high-quality
document printing capability in the form of a network terminal.

,JRP/JN T TENIEX Service. ISI is supporting, operating, and maintaining three
complete TENEX systems on a schedule of 161 hr/wk each, in order both to provide
TENEX service to ARPA and to support its research projects via the facilities at ISl. The
Institute provides 24-hour availability of TENEX systems, maintenance, and operators;
continued development/improvement support; and proper support of the XGP at IPTO.
Through this support we have achieved increased long-term up-time; faster repair and
improve preventive maintenance; economy of scale in operation; and the benefits of ISI
expertise in establishing requirements for optimal loading and high reliability. In
addition, this experience is used to assist in improving system reliability and to improve
the number of users which can be handled with required response time.

3

PROGRAM VERIFICATION

Research Staff: Ralph L Londo,g

Raymond L. Bates
Martin J. Cohen

Stephen D. Crocker
Lawrence M. Fagan
David R. Musser

Research Assistants: Martin D. Yonke
Donald S. Lynn

Support Staff: Betty Randall

GOALS AND IMPACT OF PROGRAM VERIFICATION

In many computer application areas the con,'equences of a program not performing
as intended can be quite costly or damaging. The goal of program verification research
at ISI is to develop a prototype program verification system for proving that programs
are consistent with precisely stated detailed specifications. With such a system one will
be able to achieve significant confidence that computer programs will perform as
intended. This system will be an important part of finding solutions to the manifest
problems of current software systems--their high cost, their unreliable behavior, the
difficulty of modifying them, etc. [1]. The system will be used to help certify that
software is correct and is expected to replace significant parts of testing in current
software development. The system may be used in some cases to help determine
whether protection and security specifications are met. The immediate impact will be a
system that will, at last, permit programmers to demonstrate that their programs meet
specifications. The system will also provide important tools for judging the success of
new programming language designs, new programming methodologies, and new detailed
specification techniques. The eventual result of advances in program verification will
be an increase in the quality of software with an accompanying decrease in ihe cost of

producing high quality software.

.,'7.77-

PROGRAM VERIFICATION 2

CURRENT ACCOMPLISHMENTS-A RUNNING SYSTEM

We have now produced at ISI an initial, experimental version of an interactive
program verification system [2,3. The design philosophy of the system is based on our
strong belief that large parts of the total proof of actual programs can, and should, be
done automatically, but also that in the foreseeable future some parts will have to be
done by humans assisting the system. This seems a proper response to the genuinely
open-ended nature of facts, theorems, and deductions needed to verify realistic
programs. Thus our design strategy has been to provide automatic capability for the
proof process where practical and to rely on human interaction for manual intervention
otherwise. If a program can be verified with no human assistance, then we shall
applaud the system's achievement. We expect, howe er, that the system will provide
sufficient assistance so that the verification can be completed with minimal human hints
or proof steps.

The main uniq'ie features of this syslem are its good facilities for user interaction,
the modular system design which uses several previously existing components, the
particular natural deduction theorem prover that is used, and the theorem prover's
method of incremental bounding of variables, which, among other things, facilitates
automatic proof by cases. The potential for modifying and expanding this system is an
important feature, too.

The ISI program verification system has successfully verified numerous example
programs, including binary search, various sorters, array rearrangement, arithmetic
computations, parts of a prime sieve, a few routines in the verification system itself, and
parts of two Lisp compilers. Of special encouragement and promise is the system's
ability to support some abstractions both in the program and in its detailed
specifications. This permits the proof to be completed as a structure of interconnected
and intellectually manageable pieces, the only feasible way to verify large, complex
programs. In other words, the aim is to prove many small pieces of a program and then
to combine these proofs to vepify large programs. Verifying large programs as single
entities is doomed to failure.

A BRIEF DESCRIPTION OF THE SYSTEM

The ISI program verification system is based on the conventional inductive assertion
method of proving properties of programs [4]. The verification task is decomposed into
*arts as follows: from the program and the detailed specifications, first produce a set
of mathematical lemmas called verification conditions. The syntax and semantics of the

programming language, which may be defined in several ways, are used in this st, p.

PROGRAM VERIFICATION 3

The goal is now to prove all of the lemmas; if successful, the program is verified. The
proving starts by invoking various simplification and substitution capabilities (axioms,
conditional transformations, and !:ubgoaling) covering ordinary arithmetic, the problem
domain, and the specifications.

Simplification alone often proves many of the lemmas. It.: remaining unproved
lemmas are passed to the interactive theorem prover, where numerous theorem-proving
capabilities are invoked. If unproved lemmas still remain, they must be analyzed
(currently by humans) for several situations: (1) to see if a proof seems possible,
perhaps by supplying hints or additional information to the theorem prover; (2) to see if
the lemma is false, perhaps by constructing a counterexample, thereby indicating the
need for changes to the program, to the specifications, or to both; or (3) perhaps the
truth or falsity of the lemma cannot be deternined, which indicates changes as in item 2.

The verification system consists of five major components: a standard text editor,
a program and assertion parser for Pascal programs, a verification condition generator,
a simplification and substitution package, and an interactive theorem prover. The entire
system is Lisp-based, is now completely compiled, and runs as a large program on a
PDP-1O computer. The system is implemented in Reduce, a Li'ip-based symbolic
mathematical system developed by A. C. Hearn. The particular Lisp that is used is UCI
Lisp, primarily because of its impressive debugging facilities.

One of the important features of this system is the Fxtent to which we have been
able to use previously written and highly developed programs as major system
components. First of all, Reduce, in addition to its powerful, well-developed algebraic
manipulation capability, has served as an effective language for system implementation,
and will permit the system to be as portable as Reduce itself. Our PDP-1O
implementation of Reduce also has a built-in link to a text editor, and this provides the
editor for the verification system. The Pascal parser, developed at ISI, was written in
Reduce. The verification condition gen,.rator is essentially the Pascal generator of
Igarashi, London, and Luckham [5], originally developed at Stanford. The simplification
and substitution package was developed at ISI, drawing in part on the algebraic
manipulation capability of Reduce. Several orders of magnitude in speed improvement
have been achieved over some of our earlier simplification capabilities.

Another experimental simplifier, called CEVAL, is operational. CEVAL is an
evaluator/simplifier of logical, relational, and arithmetic expressions. It has built-in
knowledge of propositional calculus, the equality relation, and order relations and
arithmetic operations on expressions representing integers and rational numbers.
Additional domain-dependent knowledge is accessed via pattern match rules, obtained
from a library of rules or suppl~ed by the user. Simplification of arithmetic expressions

PROGRAM VERIFICATION 4

and pattern matching are handled by calls to the standard evaluator of the Reduce
system. Conditional expressions (if-then-else) are used internaly to represent all
propositional calculus operators (not, and, or, implies, equivalent). CEVAL implements
only a small set of transformations on conditional expressions, similar to those discussed
by McCarthy (6) and implemented previously in the Boyer-Moore Theorem Prover '7].
However, it is still "complete" with respect to propositional calculus, in that any "alid
formula in the propositional calculus (i.e., provablb, by truth table) will be reduced to
TRUE by the transformations. Output is available either in terms of the conditional
operator or re-expressed in terms of not, and, or, and implies. Conditional expressions
have also been used in pattern match rules to express axioms for abstract data types,
as in Zilles (8] and Guttag [9]. Data types which have been axiomatized include arrays,
stacks, queues, lists, sets, graphs, trees, ond files. The convenience of conditional
expressions in this usage was one of the motivations for choosing conditional
expressions as the basic internal forr of expressions in CEVAL

The theorem prover is a variation of the prover described by Bledsoe and Bruell
[10]. The prover originally was developed at the iHniversity of Texas at Austin in
UT-Lisp, and was translated into Reduce for incorporation into the system. Although
the prover has been modified to make it more effective on the types of theorems
encountered in proving programs, its basic structure and interactive philosophy remain
valid and unchallenged. We have recently added rational arithmetic to existing integer
capabilities as well as additional interactive commands to allow the prover to work on
specific subgoals and cases.

Currently, the normal mode of using the system is to invoke interactivelv the
following system operations under the direction and assistance of an overseor program:
create the program and and specifications, parse them checking for syntax errors,
generate verification conditions, simplify them, and prove those that do not simplify to
TRUE. The overseer includes important bookkeeping, checkpointing (dump and restore),
and flexible proof step reordering facilities. The user can descend directly into Reduce
or Lisp.

Users of the program verification system are expected to be skilled in both
programming and in the problem domain for which they are writing programs. However,
even with this expertise, users have a right to expect good human-factors features in
the verification system. While much remains to be done in this important area, the
verification system already does a credible job of displaying programs, theorems,
specifications, formulas, the progress of a verification, user options, etc., in terms that
are natural for humans. In particular, on TV-like terminals there are simple, but
effective, special input/output facilities available, including split-screening.

PROGRAM VERIFICATION 5

A DETAILED EXAMPLE-BINARY SEARCH

Below is a transcript of the interactive verification system successfully veiitying a
binary search program. The transcript shows the dialogue that produced the
verification. The actual proof is a small subset of this dialogue. Some of the output
has been eliminated or slightly modified to save space without changing the sense of the
human interaction or the steps of the actual verification. An example of successful
verification of programs involving procedures and functions may be found in [21

Convnions: The prompt for human input is ">"; thus human input follows the >.
U$U asks for the default continuation at that print. Explanatory comments are enclosed

in braces (1.

IThis program does binary search on the array A[1 .. P-1] trying
Zto locate the element X. If successful, then LOOKUP is set
Isuch that A[LOOKUP]=X and ERROR is set FALSE. If unsuccessful,
IERROR ;s set TRUE.

ENTRY 1 < P 9- SORTD(A) & A[1] LE X & X < A[P];
EXIT (A[LOOKUP]=X) AND (ERROR=FALSE) OR NOTFOUND(X,A) AND (ERROR =TRUE);
BEGIN M:=1 ;N:=P;ERROR:=FALSE;
ASSERT M < N & A[M] LE X & X < A[N] & SORTED (A) &ERROR=FALSE;
WHILE M+I<N DO BEGIN

:=(M+N)DIV 2;
IF X < A[I] THEN N:=I ELSE IF A[I] < X THEN M:=I

ELSE BEGIN LOOKUP:=I;GOTO I END
END;

IF A[M] NE X THEN GO TO 2 ELSE BEGIN LOOKUP:=M;GO TO 1 END;
2: ASSERT NOTFOUND(X,A);ER3OR:=TRUE;
1: ASSERT (A[LOOKUP]=X) AND (ERROR=FALSE) OR NOTFOUND(X,A) AND (ERROR=TRUE);
END.

>PROVE BSRCH; {Start wor!, on problem named BSRCH}
Parse: S (FILE = BSRCH.PAS), RESET (FILE)
>S Parsing file BSRCH.PAS {the above program}
Vcgen: S (UNIT = MAIN), RESET (UNIT)
>Susing unit MAIN {selecting main program over any

procedures / functions}
Generating verification conditions MAINi[... MAIN#8
Trying to simplify MAIN#1

Choice: S (PROCEED), +/-N, END, ASSUME, DEFER, STATUS, REDUCE
>Sproceed(A)

I<P
and SORTED(A)

PROGRAM VERIFICATION 6

and A[1] LE X

and X < A[P]
imp I<P

and A[1] LE X
and X < A[P]
and SORTED(A)
and FALSE=FALSE

simplified to
TRUE
VC was MAIN#1
Trying to simplify MAIN#2

Choice: S (PROCEED)

>Sproceeding
M<N

and A[M] LE X
and X < A[N]
and SORTED(A)
and ERROR=FALSE
and M+1 < N

imp X < A[(M+N) DIV 2]
imp (M < (M+N) DIV 2) and (A[M] LE X)

and X < A[(M4N) DIV 2]
and SORTED(A)
and ERROR=FALSE

simplified to
X < A[(M+N) DIV 2]

and X < A[N]
and A[M] LE X
and M+2 LE N
and M<N
and SORTED(A)

imp M < (M+N) DIV 2
VC was MAIN#2 save as? >SMAIN#S2
Trying to prove MAIN#S2

Choice: S (PROCEED)
>Spi oceeding
(SETUP) { (x y z) denotes theorr-- orover operations;

here processing inequalities}
>Print Current theorem

N in [M+2..POSINF]
and M in NEGINF..N-2]
and A[MI in [NEGINF..X'
and A[N] in (X..POSINF]
and X

in [A[M]..
MIN(A[(M+N) 9IV 2] - 1,

ArN] - 1)]

PROGRAM VERIFICAT ION 7

II and A[(M+N) DIV 2] in (X..POSINF]
and SORTED(A

imp M < (M+N) DIV 2
>Sproceeding

*... more time? >NO
M < (M+N) DIV 2 !conclusion of current subpoall
Failed Time Limit
>USE
Lemma:
>2 *X LE YIMP X LE YDIV 2;
save as? >DIVFACT

X.*2 LE Y. !Periods added to denote matchable variables)
imp X. LE Y.DIV 2

[Confirm]
(SETUP LISE-LEMMA)
>Go (requests automatic completion of proof step!
(SETUP USE -LEMMA GO BACK-CHAIN)
[Using, Y. :=M+N ; X. := M+I]
M+2 LE N
PROVED by typelist
M < (M*N) DIV 2
PROVED
MAINuS2 PROVED
Trying to simpfify MAIN#3

Choice: S (PROCEED) ..
>$proceedi ng

M<N
and A[M] LE X
and X < A[N]
and SORTED(A
and ERROR=FALSE
and M+j < N

imp NOT (X < A[(M'-N) DIV 2)
imp Q[M N) DIV 2] < X

imp (M+N) DIV 2 < N
and A((M+N) DIV 2] LE X
and X < A[N]
and SORTED(A
and ERROR=FALSE

simplified to
X < A[N]

and A[(M+N) DIV 2] < X
and A[(M+N) DIV 2] LE X
anid A[M] LE X
and M+2 LE N
and M<N
and SORYED(A

PROGRAM VERIFICATIOWI 8

imp (M+N) DIV 2 <N
VC was MAIN*3 save as? >SMAIN#S3
Trying to prove MAIN*S3

Choice: S (PROCEED) ..
>Spiroceeding
(SETUP)
>USE DIVFACT; !the same lemma used in MAIN#S2} '
Lemma:

X.*2 LE Y.
imp X. LE Y. Dry

(Confirm]
(SETUP USE-LEMMAA)
>GO
(SETUP USE-LEMMA GO BACX<-CHAiN)
[Using Y. := -(M+N) ; X. :=1-N]

M+2 LE N
PROVED hy typelist
(M+N) DIV 2 < N
PROVED
MAIN#S3 PROVED
Trying to sim~plify MAIN#4

Choice. S (PROCEED) ..
>Sproceeding

M<N
and A[M] LE X
and X < A[N]
and SORTED(A
and ERROR=FALSE
and M+i < N

imo NOT (x < A[W N) DIV 2])
imp NOT (A[(M+N) DIV 2] < X)

imp A[(M+N) DIV 2] = X
and ERROR=FALSE

or NOTFOUND(X A) and (ERROR=TRUE)
simplified to

X LE A[(M+N) DIV 2]
and X < A[N]
and A(%M+N) DIV 2] LE X
and A[M] LE X
and M+2 LE N
and M<N
and SORTED(A

imp (FALSE=TRUE) and %DTFOUND(X, A)I or X = A[(M4N) DIV 2]
VC was MAINtt4 save as? >SVAIN#S4
Trying to prove MAINstS4

Choice: S (PROCEED) I
LI

I PROGRAM VERIFICATION 9

>Sproceeding
(SE-,UP)
>GO
(SETUP GO)
Typelist equality added to hypotheses: X Ar(M+N) DIV 2]
Disjunct found in hypotheses: X = A[(M+N) DIV 2]

(FALSE=TRUE) and NOTFOUND(X, A)
or X = A[(M+N) DIV 2]

PROVED
MAINuS4 PROVED
Trying to simplify MAIN#5

Choic-?: S (PROCEED) ..
>Sproceeding

M<N
and A[M] LE X
and X < A[N]
and SORTED(A
and ERROR=FALSE
and NOT (M+1 < N)

imp A[M] NE X imp NOTFOUND(X, A)
simplified to

X <ArN]
and A[M] LE X
and M<N
and N LE M+1
and X NE A[M]
and SORTEDWA

imp NOTFOUND(X, A)
VC was MAINst5 save as" >SMA;,%S5
Trying to provie MAIN#S5

Choice: S (PROCEED) ...
>Gpoceiy
(GO STP
TyplO SEUalt de)onponss +

Automatic substitution: M:=\-1
(GO SETUP =SUB)
..NEED MORE INFORMATION

Lemma:
>SORTED(A) AND (A[K] < X,1 AND (X < A[K+1]) IM? NOTFOUND(XA);
save as? >SORTI

X. < A.[K.+1]
and A.[K.] < X.

and SORTED(A.)
imp NOTrOUND(X., A.)

[Confirm)

PROGRAM VERIFICATION 10

(GO SETUP =SUB USE-LEMMA BACK-CHAIN)
[Using K. := N-I ; X. =X ; A.: A)

< A[N]
PROVED
A[N-1] < X
PROVED by lypelist

X. < .K-l

and A.[K.] < X.
and SORTED(A.)

NOI FOUND(X, A)
PROVED
MAIN#S5 PROVED
Trying to simplify MAIN#6

Choice: 3 (PROCEED) ..
>DEFER Irequests delayed action on this goall
Trying to sirmplify MAIN#7

*Choice: S (PROCEED) ..

>Sproceeding
NOTFOUND(X, A)

imp (A[LOOKUP] = X) and JTRUE=FALSE)
or NOTFOUND(X, A) and (TRUE--TRUE)

simplified to
TRUE
VC was MAIN#7
Trying to simplify MAIN#8

Choice: S (PROCEED) ..
>$proceedina

A[LOOKUP] . X) and (ERRCR=FAL SE)
or NOTFOUND(X, A) and (ERROR=TRUE)

imp (A[LOOKUP] = X) and (ERROR=FALSE)
or NOTFOUND(X, A) and (ERROR=TRUE)

simplified to
TRUE
VC was MAIN#8
Prove: NO(S),UN(OEF ERRED), DEF(ERRED) (VC'SX or (RE-) VCGEN
>DEF {requests action on deferred goals'.
Trying to simplify MAINu6

Choice: S (PROCEED)

>Sproceeding
M<N

and A[M] LE X
and X < A[N'
and SORTED(A
and ERROR=FALSE
and NOT (M+1 < N)

imp NOT (A(M] NE X)

PROGRAM VERIFICATION

imp (A[M] = X) and (ERROR='ALSE)
or NOTFOUND(X, A) and (ERROR=TRUE)

Proposed substitution: X := A[M]
>YES
Sub used: X:=A[M]simplified to

TRUE
VC was MA' 6
>STATUS;
MAIN# I ==> PROVED by simplifier
MAIN#2 ==> MAIN#S2 PROVED by prover
MAIN#3 ==> MAINitS3 PROVED by prover
MAIN#4 ==> MAINeS4 PROVED by prover

N MAIN#5 MAIN#S5 PROVED by prover
MAINu6 ==> PROVED by sim.plifier
MANu7 => PROVED by simplifier
MAIN#8 ==> PROVED by simplifier

OVERALL EXPECTEO PROJECT ACHIEVEMENTS

Verifying programs is not now a trivial task, nor should one expect the task ever to
become trivial. Some people claim that computer programs are among the most complex
objects created by the human mind. Accordingly, while we are optimistic, we neither
seek nor expect panaceas in the area of program verification. We do expect, however,
effective systems to aid humans in the verification task (and indeed in the joint effort of
program construction and verification).

The current ISI verification system is already useful in helping to verify programs,
as shown by the some fifteen examples from the verification literature it has
successfully verified. More importantly, by virtue of its generally modular construction,
we can experiment with new system components and with new verification strategies
and ideas. We will continue to do this as we make more of our verification experience
available to others in the form of an effective program verification system. Yet, we are
also very much aware of the system's shortcomings--both minor and fundamental.
Correciing the minor limitations can be viewed as system tuning, and some of this
remains to be done. Our major continuing efforts, however, will be directed to
overcoming fundamental restrictions in achieving a truly effective system for
widespread human use in verifying large, important programs. Success here will permit
the verification, and hence improved quality, of a far wider class of programs involvingrI
many more programming anguage constructs. Furthermore, such verifications will be
markedly more credii.-e and much easier and less expensive to accomplish than is now
possible. The payoff will be software that is known to meet specifications and to work
as intended.

PROGRAM VERIFICATION 12

The user will ultimately see an improved version of the currently running system
which has been described previously. He will present to the system both his program
and his detailed specifications of what that program does. More precisely, the user will
present the program part-by-part along with the corresponding specifications; the
overall verification will be completed by combining the veritications of these parts. The
system will keep track of the progress of the proof and, in particular, will indicate what
remains to be proved. It will accept advice, hints, and changes from the user and will
provide suggestions to the user. It will collect all the facts which the user advises may
be assumed in the verification so that the user (and others) will know what assumptions
were made in the verification. It will present the final verification in a readable form.
The system will play the dual role of overseer of the verification and of helpful
assistant for the user as both the user and the system jointly work on verifying the
user's program. The user will thus be able to verify his programs or to discover where
errors exist in either his program or his specifications. The main use of the system will
be in achieving software that provably does what it is supposed to do. The system will
also, as noted, be useful in judging the success of new programming language designs,
new programming methodologies, and new detailed specification techniques.

As we develop interactive and automatic verification tools during the course of this
project, we expect to use them successfully on significant, real computer programs
which will be selected from both computer science and military applications. In this way
we will successfully demonstrate that the goals, impacts, and payoffs that are described
are indeed achievable.

PROGRAM VERIFICATION 13

REFERELiLtES

1. Goldberg, J., ed., Proceedings of a Symposium on the High Cost of Software,
Monterey, California, September 1973. Published by Stanford Research Institute.

2. Goocd. D. I., London, R. L, and Bledsoe, W. W., "An interactive program verification
system," P'oceedings of International Conference on Reliable Software, April
1975, 482-492. Also, IEEs Transactions on Software Engineering, SE-1, 1,
March 1975, 59-67.

3. London, R. L and Musser, D. R., "The application of a symbolic mathematical
system to program verification," Proceedings of ACM Annual Conference, 1974,
265-273.

4. Floyd, R. W., "Assigning meanings to programs," Proc. of a Symposium in Applied
Mathematics, Vol. 19--Mathe miatical Aspects of Computer Science,
J. T. Schwartz, ed., American Mathematical Society, Providence, R.I., 1967, 19-32.

5. Igarashi, S., London, R. L., and Luckham, D. C., "Automatic program verification
h1: A logical basis and its implementation," Acta Informatica, 4, 2, 1975, 145-182.

6. McCarthy, J., "A basis for a mathematical theory of computation", Computer
Programming and Formal Systems, P. Braffort and 0. Hirschberg, eds., North
Holland Publishing Company, Amsterdam, 1963, 33-70.

7. Boyer, R. S. and Moore, J S., "Proving theorems about LISP functions," J. ACM,
22, 1, January 1975, 129-144.

8. Zilles, S. N., "Algebraic specification of data types", Project MAC Progress
Report 11, Massachusetts Institute of Technology, Cambridge, Mass., 1974.

9. Guttag, J. V., "Dyadic specification and its impact on reliability," Three Approaches
to Reliable Software: Language Design, Dyadic Specification, Complimentary
Semantics, J. Donahue, J. D. Gannon, J. V. Guttag, and J. J. Horning, Technical
Report CSRG-45, Computer Systems Research Group, University of Toronto,
Toronto, Canada, December 1974, 48-88.

10. Biedsoe, W. W. and Bruell, P., "A man-machine theorem-proving system," Advance
Papers of Third international Joint Conference on Artificiul Intelligence, 1973,
56-65. Also, Ar~ficial Intelligence, 5, 1, Spring 1974, 51-72.

--F " 5:' '' " '- ,. -; : ,, , . J.. ..

14

PROGRAMMING RESEARCH INSTRUMENT

Research Staff: Louis Gallenson

Raymond Bates
Joel Goldberg
Raymond L. Mason

Support Staff: George W. Dietrich
Oralio E. Garza
Rennie Simpson

DESCRIPTION

The PRIM (Programming Research Instrument) project has completed an interactive
microprogramming facility to be used as a general-purpose emulation laboratory for
creating, manipulating, and debugging arbitrary computer architectures and high-level
language processors. A ur.-ue service on the ARPANET, it consists of a powerful
sharable microprogrammable CPU (the MLP-900) closely coupled with a TENEX system
and appropriate software to allow interactive access to, and control of, the computing
environment the user wishes to emulate. The MLP-900 has proved to be reliable in
continuous operation since August 1974, with the primary appicatio,s being the
emulation of existing minicomputers for experimentation and evaluation. A library of
emulators is being developed as user population grows; the library currently consists of
a basic PDP-10 (developed as a test vehicle for the system), a PDP-8, a PDP-11, an
AN/UYK-20, a Univac 1050 MOD2, and a Nova (CPU only). As the emulator library
continues to grow, the PRIM facility should become more attractive to a larger user
community. Current plans also include allowing users access to these virtual machines
(emulators) via a National Software Works Tool Bearing Host. This will make available
several new NSW tools with a single interface. (See Section 3 for a further discussion
of the National Software Works (NSW).) PRIM is therefore becoming a service facility,
providing a unique tool to groups of NSW programmers, as well as an experimental
computer environment for the researcher.

TIIE PRIM FACILITY

The PRIM system was developed at ISI as a subsystem of TENEX, the time-sharing
system of Bolt, Beranek and Newman, Inc. PRIM consists of the MLP-900
microprogrammable processor together with appropriate software to drive the
MLP-900, to support MLP-900 microprogramming, and to provide an environment in
which users create, manipulate, and interact with their emulators and/or emulated
systems, - id user documentation.

PROGRAMMING RESEARCH INSTRUMENT 15

Hardware

PRIM's hardware system is based on two processors: the Digital EqL pment
Corporation's POP-IC and the STANDARD Computer Corporation's MLP-900 prototype
processor. (See Fig. 2.1.) The POP-1O and MLP-900 share memory as dual processors;
the MLP-900 is also a device on the PDP-IC I/0 bus. The PDP-1O, connected to the
ARPANET, runs under TENEX with a paged virtual memory. Its processor contains 256K
words of 36-bit memory. Tlie I/0 operations performed by TENEX include file, terminal,
and network handling, swapping, and all other accesses to peripheral devices.

The MLP-900 is a vertical-word micropro',ammed computer (microprocessor) that
runs synchronously with a 4-MHz clock. '. is characterized by two parallel computing

$ engines: the Operating Engine (CE), wnCh performs arithmetic operations, and the
Control Engine (CE), which performs control operations. The OE contains 32 36-bit
general-purpose registers for operands and 32 36-bit mask registers to specify
operand fields. A 1K 36-bit high-speed auxiliary memory is associated with the OE.
The CE contains 256 state fhp-flops, a 16-word hardware subrout;ne return stack, and
16 8-bit pointer registers. The MLP-900 is accessible only through the PDP-IO as
outlined above (i.e., the I/0 bus and shared memory); no p,'ovisions have been r ade for
direct connection of any peripheral devices. The introduction of a microvisor state has
been of major importance to the PRIM project. Prior to this project, little had been
done toward making the multitude of available microprogrammed processors potentially
sharable resources. This initial experiment goes a long way toward making
microprogrammed processors widely and inexoensively available.

FT

Figure 2.1 The MLP-900.

i* 9 _____Vnut ___

PROGRAMMING RESEARCH INSTRUMENT 16

Software

There are three principal items of PRIM software:

0 The General Purpose Microprogramming Language (GPM) compiler.

* The MLP-900 microprogram supervisor (microvisor).

* The TENEX MLP-900 programs, i.e., the MLP-900 driver and MLP-EXEC.

The GPM compiler was essentially completed in early 1973; for a more detailed
account of its development the reader should consult Ref. 1.

GPAf and the GPA! Compiler. GPM is a high-level machine-oriented language,
written in TENEX BLISS, designed explicitly for the MLP-900. As a high-level language,
GPM offers a block structure and statement syntax similar to PL/1 or ALGOL. The
specific statement types defined in GPM are generalizations of the actual MLP-900
MINIFLOW instruction set; constructs completely foreign to MINIFLOW (e.g., multiplication)
do not appear in GPM. As a simple example of MINIFLOW generalization, consider that
the result of a GEAR (GEneral ARithmetic) mnistep may be shifted left or right only by
0, 1, 2, 4, 6, 8, 12, or 16 bits; in GPM, any shift amount may be specified, and the
compiler will generate multipie shifts as required.

As the production language for the MLP-900, GPM is constrained to satisfy many of
the usual requirements of an assembly language. First, there is a well-defined subset
of GPM statements that produce exactly one ministep per statement; the subset is
capable of generating all possible ministeps. Second, multi-ministep statements do not
generate implicit side effects; for example, a complex arithmetic assignment that
requires a temporary register for an intermediate result will generate a compile-time
error unless the programmer has explicitly declared some register to be available as a
temporary.

The GPM compiler is successfully being used to write diagnostics for the MLP-900
and test user software (emulation of a PDP-.0). Experience with the compiler reveals
that minor modificat,)ns and suggested speed improvements may be required. The
improvements will be considered as more measurement data is accumulated and specific
critical code is further identified.

he I.P-O00 spicroi.or. The MLP-900 microprogram supervisor (microvisor) is a
small, fully protected resident system tat controls the MLP-900 and its communication
with the PDP-.O. It loads and unloads the user's MLP-900 context upon command from
the PDP-].0, supports paging of the user target program, protects main memory and the
rest of the PDP-1O system from user interpreter errors, and provides the interpreter
with a few services, such as an extended subroutine stack and calls for external
ommunication. (The microvisor requires 356 (octal) words of control memory, including

its Action Request locations.)

PROGRAMMING RESEARCH INSTRUMENT 17

The microvisor performs the functions normally expected of an operating system,
the difference being that it is written in microcode and supervises the eyecution of
microcode. The microvisor interacts only with the user microcode and the TENEX MLP
driver; it does not provide any facilities for--or impose any restrictions upon--the user
target system. User microcode is subject to the restrictions imposed by the user mode
MLP-900 hardware.

PDP-IO Support Programs. The PDP-1O TENEX software for support of the
MLP-900 consists of a driver to control communication with--and sharing of--the
MLP-900, and a subsystem (MLP-EXFr' to allow interactive access to the MLP-900 for a
user at a TENEX terminal. The MLP driver and its TENEX JSYS's comprise the interface
to the MLP-900 used by MLP-EXEC.

IThe TENEX MLP-900 Driver. As mentioned above, access to the MLP-900 from a
TENEX process is accomplisheci via the MLP driver in TENEX. The driver is the
-'x',.nsion in TENEX of the microvisor; all communication with the MLP-900 goes through
the driver. While new microcode "machines" can be designed and debugged under the
MLP-EXEC, completed ones will work directly through their own terminal subsystems,
which will communicate directly with the driver. Communication with the driver is
accomplished through a series of JSYS's which mimic (roughly) the JSYS's for subsidiary
fork control. The two principal elements involved in creating ard running the MLP are
the MLP context (the user mici ocode together with all the MLP registers) and the target
system upon which the context is to operate. The calling process must build both
before establishing access to the MLP.

The context is a structure that contains all the data necessary to load the MLP and
begin (or resume) execution of the desired microcode. It includes not only an image of
the MLP-900 control memory, but also the internal MLP-900 registers and some cells
used by the driver to implement MLP-900 communication with the PDP-IO. The context
is 10 memory pages (5120 words) long, and must begin on a page boundary in the
caller's address space.

The target system is the memory upon which the MLP context is to operate. It is
defined as a TENEX fork (or process)--either the caller or a subsidiary fork established
solely for this purpose. Typically, the target system fork (SFORK or SFRKV) will never
be started on the PDP-IO; it exists to define an address space for MLP execution.

To protect the ISI TENEX system and lessen the impact of MLP debugging (both
hardware and software) the initial version of the driver has been implemented almost
entirely as a normal user process rather than as part of the TENEX opevating system.
This preliminary driver is being used in debugging the entire system, including the
interfaces between the microvisor and the driver, and between MLP-EXEC and the
driver. While the differences between preliminary and final driver are transparent to
both the microvisor and the user microcode, there are some unavoidable differences for
the calling TENEX process. MLP-EXEC is aware of the differences, and handles them
properly; to the user of MLP-EXEC, the only visible difference is that the response time
is longer. 1

wk~

".

PROGRAMMING RESEARCH INSTRUMENT 18

MLEXEC and iks Commands. MLP-EXEC is a user program, called via TENEX,
written primarily in BLISS. The program basically consists of two modules: the I/O
handler (which includes file access and target memory allocation) and the debugging
facility (MLP DDT). The MLP-EXEC commands assum a famil;arity with TENEX Exec
commands; a subset of TENEX commands is implemented for functions similar to those of
the TENEX Exec.

MLP-EXrC provides an environment in which the user at a terminal can compile,
load, execute, and debug MLP-900 microcode in a manner similar to that used for
debugging programs on the PDP-10. In addition, he can create and debugo target
programs and environments--although these tonIs must be provided at a very primitive
level, since MLP-EXEC cannot know the nature of the target environment.

The MLP-EXEC "ready" character, ">," signals the user to enter a command.
Commands to MLP-EXEC can specify any of several types of actions:

" Controlling the loading, execution, or debugging of the MLP context.
* Controlling the loading and debugging of the target system.
" Setting up the input/output files for the MLP.
" Providing access to the TENEX within MLP-EXEC as a convenience.

All the commands for user context manipulation begin with a period ("."). These
include LOAD, RESET, CONTINUE, RUN, SAVE, GET, and DDT commands.

All of the commands for the target system begin with the character "" and use
standard TENEX subsystems in responding to the command (i.e., /LOAD invokes the
standard TENEX loader to load a relocatable binary file into the target system's address
space). These include GET, MERGE, DDT, SAVE, SSAVE, and RESET commands.

The command format, key words, arguments, and separators are identical to those
used in TENEX. MLP-EXEC prompts for each field required by the user's command, and
the escape terminator will complete abbreviated commands. Additionally, two
characters (Control T and Control C) act as commands in themselves to control MLP
execution and to provide status information on the MLP. Editing control characters are
also included to edit command key words and arguments.

User Interpreter and Target Progranm. The user's interpreter is a program written
in GPM to run on the MLP-900; it defines a (re-entrant) MLP-900 control memory image.
This image, together with all the nonprivileged registers and flip-flops within the I
MLP-900, is the MLP-900 context; user's contexts are loaded and unloaded as th:' MLP
driver shares the MLP among different users.

The context defines the user's interpreter (or target machine) and operates upon
the user target program in a totally arbitrary way. The only constraint upon the target
program is that it fit into a 512K, 36-bit (virtual) memory space.

MA

PROGRAMMING RESEARCH INSTRUMENT 19

PAST EFFORTS

PRIM has been a major project at ISI since the inception of the Institute in May of
1972. The goals of the project have remained essentially the same throughout this
period of time: to provide a flexible experimental computing envircnment available tothe researcher via the ARPANET. The implementation of this unique facility successfully
demonstrated several firsts:

1. To take advantage of a rich source of existing software, the micropr1grammable
computing engine was closely coupLd to a TENEX system which provides all the 1/O and
file handling capabilities. We were able to create a microprogrammable environment
and still minimize the new software required to provide the researchers with the
needed tools.

2. The microprogrammable computer has been implemented as a multi-access
sharable environment requiring an executive state. The MLP-900 hardware was
modified to provide protection of the resident microvisor, as well as protection between
users of PRIM cnd the TENEX systems.

3. A generalized debugger is currently being implemented to facilitate debugging
of target programs for a variety of environments and emulated computer architectures.

The first year's effort was primarily concerned with system design, hardware
development, and the design of a compiler to produce microcode for the MLP-PYO0. The
second year's effort completed the designs and implementations of the haruware and
software requirements. This included integration and checkout of the hardware,
diagnostics and the software to drive the MLP-900 from the TENEX operating system.
The third year's effort was primarily concerned with interacting with potential users,
developing emulators, final debugging, and subjectively monitoring the use and
acceptance of the facility. The dosumentation of the facility was also completed: PRIM
User's Manual [1] and the Maintenance Manual (the latter in draft form).

CURRENT EFFORTS

Recently we have been involved in introducing PRIM to a number of users in the
military community to demonstrate its utility, evaluate its acceptance, and collect data
for inputs to IPTO for planning management of this facility. We have taken two
approaches in introducing the PRIM system. First, wide distribution (more than 200
copies) of the PRIM Overview, coupled with invitations to an introductory workshop and
demonstration of the system. Second, direct contact with some thirty individuals
representing twenty orga'iizations within the ARPA and military communitie~s. Most of
ihe direct contacts were initiated by us; the rest were the result of queries ty persons
receiving the Overview.

Our approach is to seek out potential users within the military commands, assess

their problems, and (where warranted) join with them in a team effort to solve theseproblems. A joint effort between ISI and NEIC has produced an AN/UYK-20 emulitor in

PROGRAMMING RESEARCH INSTRUMENT 20

order to ,.3nduct a set of experiments required by an NELC Software Development
Group. The AADC project at NADC has expressed interest in using PRIM for
development work and computer architecture studies. As mentioned at the beginning of
this section, ISI is also using PRIM as a Tool Bearing Host of the National Software
Works. We also approachea selected individuals in the academic community (University
of Southern California, University of California at Los Angeles, and Carnegie-Mellon
University), encouraging students with qualified projects to use the PRIM facility.

The Symbolic Manipulation of Computer Descriptions (SMCD) project at CMU wi!l
utilize a microprogrammable computer to achieve ;ts goals and has comoleted a
comparison study of two candidates.* The MLP-900 and a PDP-I 1/40E are two of thecandidates for the computer. The POP-11 is a 16-bit machine housing 1K word of 80

bit microstore, and basic cycle time of 140 to 300 nanoseconds. Four primary
benchmark programs were written for each candidate including the Nova emulator (basic
CPU). The PDP-I I is a somewhat faster target machine except where the user can take
advantage of the wider data path of the MLP (36 bits) as in a multi-word integer
multiply. The MLP is somewhat easier to program the primary project task, an
optimizing micro-compiler, a'hough the task is rated as difficult for both machines.
These conclusions are consi.tent with the expected advantages of both types of
microprogrammable computers, vectoral and parallel. The SMCD iroject will continue
this evaluation, since many outside factors must be considered before selecting the
optimal tool to satisfy their research needs. NELC continues to express strong interest
in the PRIM facility. They are in the final stages of debugging their AN/UYK-20
emulator and are preparing a series of experiments for a dual host connection using the
MLP-900 TENEX and second host on the ARPANET. NELC has generated a proposal to
build and support a System Design Laboratory (SDL) - the core of which would be the
MLP-900 - and to continue to provide this unique service to the development community
via the ARPANET. Moving the MLP-900 to NELC would help to successfully terminate
this project, finding an appropriate home for the MLP-900 in the military environment is
one of the project's major goals for FY77.

Recent interest in the MLP-900 has been expressed by: ADTC at Eglin Air Force
Base to evaiuate micro-processor architecture, Dr. Wesley Chu of UCLA for a study
and evaluation of bus architecture, vnd provide an instructiona; .vehicle for a course in
microprocessors, and NSW to satisfy the needs of a family of Tool r3earing Hosts.

The NSW requirements for a TBH are easily and economi:ally satisfied by PRIM
capabilities. These requirements (connectivity to the ARPANET, file handling, control of
tasks (start, stop etc.,) and user accounting znd status reports) are all available to NSW
by upgrading the existing TENEX to a TENEX TBH operating system. New tools can then
be added by building new emulators within PRIM; as the library of emulators grow, the
MLP-900 will provide a family of NSW tools. The first of these emulated systems is a
Univac 1050 MOD 2, which serves as a base computer in many Air Force installaticns.
The instruction set (CPU) for this virtual machine has been compieted and is currently

* Oakley, John, "A Comparison of Two Microprogrammable Processors: PDP-I 1/40E

and MLP-900," Department of Computer Science, Carnegie-Mellon University, May 1975.

PROGRAMMING RESEARCH INSTRUMENT 21

being debugged. The implementation of the I/0 environment required to complete this
task should be available by August 1975. We estimate 3 to 4 man-months for the
average system emulation effort. On an average the emulated system will run 2 to 10
times slower than real time. For this compromise in speed, the economical advantage of
building emulators over electrically interfacing system and debugging software as a host
machine on the ARPANET is significant. (For new Host/IMP interfaces the average costs
are $20,000 hardware and 4 to 6 man-months of programming and testing.) In the case
of the U1050, a reasonable ARPANET Host interface is not economically feasible. Of
greater advantage for the NSW environment is the capability of bui'ding emulators
richer in debugging capability than the original systems, simplifying the user's
programming tasks.

DfBUGGER

Work is proceeding on a new interactive debugging facility which a!lows a user--an
emulator implementr-r or the user of an emulated machine--to inspect and/or modify his
PRIM environment in a form which is understandable and comfortable to him.
Implementors work in terms of MLP registers, control memory, target memory, and GPM
cod user programmers in terms of their machine's memory, registers, and assembly
language. (The implementor's facility is improved over the old debugging facility only
to the extent that he can use the "user" facility when the mood strikes: most of the
imptovement is directed toward the user of the implemented target machines, who
formerly operated in octal or a primitive subset of his assembly language.) In order that
the debugger handle the various target mach.ne languages, each machine :mplementor
must now also generate the various tables and routines required by the debugger to
"understand" his machine's assembly language. We anticipate that, at least for most
minicomputers, the work to develop the necessary tables will be insignificant in relation
to the work required to develop the emulator itself.

The primary -oal of this work is the creation, tor each emulated machine, of a
familiar debugging environment with a minimum of new rules and strange syntactic
forms. Due to the great diversity of machines-and more importantly, of assembly

t languages-the overall system is designed to be extremely flexible in its syntactic
demands. A secondary goal of the work is the creation of a relatively simple--though
not necessarily familiar--specification of the machine-specific items which must be
encoded to add a new machine to the debuger's vocabulary. Adding a new mazhine to
the system requires the cooperation of both the implementor and PRIM system
personnel; the initial machine vocabulary, including AN/UYK-20, PDP-1I, 7.nd Univac
1050, is being generated as part of the initial effort. To the extent that th', secondary
goal is in conflict with the first goal, the interface specification wili suffer. Desigyn work
on the sysiem is now completed, and implernentation of the initial varsion is under way,
with a scheduled release date of July 1975.

The MLP-900 continues to operate reliably and throughout FY75 we experienced
only three hardware 'ailures. The system has been available to tEe users whenever
TENEX was available. Effort to locate and correct marginal operations, especially within
the TENEX interface subsystem, continues, for we have experienced occasional

Jl= -- -i -

PROGRAMMING RESEARCH :NSTPUMENT 22

unexplained malfunctions. These malfunctions have been limited to main memory
transfers, affecting !he current user only, and do not require a system restart.

The operational reliability of the MLP-900 is stated with guarded optrnism because
to date we have had minimal use of the system. During the past yeer we estimate
about 70 hours of MLP-900 CPU time with six different users running or debugging five
different emulators. Continued reliable operation as the user population increases and
more emulators become available would provide sufficient reliability data. We are
optimistic that this will occur in FY76. However, the MLP-900 currently runs
diagnostics two hours each evening in order to keep it exercised.

FU'IURE EFFORTS

The goal for PRIM in FY76 is to evaluate its utility as a service on the ARPArET. To
this end we will continue zo work cooperatively with the aforementioned users, seek
new users, and complete PRIM's transition from experimental testbed to a new service
on the ARPANET.

At the start of this contract period, in FY76, PRIM will have the beginnings of a
library of emulators: PDP-1 1, PDP-8, AN/UYK-20, U1050 and Nova. With this library of
emulators (of minicomputers), PRIM can offer an additional service for users Interested
in experimenting with programs for minicomputers. With the power of TENEX (editors,
compilers, debuggers, etc.) we can offer a significant amount more development power
for the multitude of minicomputer users. We intend to explore and expand this use of
PRIM throughout this proposal period. Similarly, we intend to aid programs such as the
National Software Works tu use PRIM as a special design tool available on the ARPANET.

A major portion of our future effort will be spent in building an MLP tool to)r NSW.
A teol, in NSW, is a logical device capable of responding to commands of the user.
Implementation of MLP tools will require rewriting of the MLP-EXEC to conform to NSW
specifications. The new EXEC (MLP-TOOL) will provide a standard interface to all tools
running on the MLP-900. The first of these tools being implemented is the UNIVAC
1050 M002. We are contemplating the need for at least two more, currently
unspecified virtual tools.

Each of the tools developed for NSW will also require at least two levels of user
inieraction requiring additional software development within the ILP-TOOL. A user can
specify a tool, i.e., U1050, either as a bare CPU or with operating system. In either
case, the users next request will probably be to load a specified program. In one case
the command will be interpreted by the MLP-TOOL and in the latter case by the target
system being run by the MLP-900. The latter case will be the prominent one being
used by NSW users, and the implementation task is one of making most of the loads,
get., configuring I/O environment invisible to the user. The PRIM user currently
commands the system to perform all these tasks to provide the flexibility required by
the researcher. The NSW user is typically a programmer trying to create and debug a
prograr,, and NSW provides the tools for facilitating this task.

i ,..~~ ~~~~~~~~~ ~~~~ ~~ .== ..' .i''''€-= .'T .' .'

PROGRAMMING RESEARCH INSTRUMENT 23

Another program we intend to support is the NELC effort to design a System Design
Laboratory, mentioned above. SDL is a tool for solving some of the problems
associated with designing large systems in the Navy Laboratory Communities. The
MLP-900 will provide some of the original capabilities required by SDL. Therefore the~tentative pian is to rnnve the MLP-900O to NELC in San Diegoo, California. Planning the

move, training NELC personnel, and helping in design of the SDL could require a
significant amount of PRIM project effort. SDL will continue to support all users via the
ARPANET so that the MLP-900 users except for 3 to 4 months of nonavailability will not
be aware of this move. This would bring the PRIM project to a successful conclusion by
early FY77 with all major project goals being achieved: creation of the facility, using the
facility in nontrivial wa, and transferring the technology to users within the military
community.

REFERENCE

1 PRIA User's Manual, ISI/TM-75-1, April 1975.

24

AUTOMATIC PROGRAMMING

Research Staff: Robert M. Balzer

Neil M. Goldman
Norton R. Greenfeld
Walter R. Ryder
John J. Vittal
David S. Wile

Research Assistant: David Wilczynski

Support Staff: Chloe Holg

INTRODUCTION

The goal of ISI's Automatic Programming project is simply to allow experts of an
application area who are not programmers to functionally specify their application
directly to a computer system, with the system transforming this input into a precise
operational functional specification of the application. Sjch an accomplisiment
represents a testable model of the proposed application which could be used as follows:

0 As a precise specification of the desired application program from which a
human programmer could generate the application and against which the
implementation could be tested.

* To examine the functional behavior of the application against the requirements
and, if necessary, to modify the functional specifications until they satisfy the
requirements.

0 As the input to an automatic test data generator which would develop test cases
to comprehensively exercise the model.

Because DoD's activities are so diverse, such a system must be capable of accepting
specifications for a wide variety of applications.

It is well known that software is in a desperate state. It is often unreliable,
delivered late, unresponsive to change, inefficient, and expensive. Furthermore, since it
is currently labor intensive, the situation will further deteriorate as demand increases

AUTOMATIC PROGRAMMING 25

and labor costs rise. Thus DoD faces one of two choices: either increase the
productivity of highly trained, carefully selected specialists or reduce the training
requirements through automation, thereby broadening the base of qualified users.
Structured programming, built around the concept of discipline, addresses the first path,
the approach we propose the second. We feel that the first approach will perpetuate
much of the current crisis as systems continue to become more complex. Only
automating the process can control the enormous complexity, improve the reliability,
modifiability, and efficiency, and reduce the cost. For this approach to be successful,
the system must acquire and use a semantir, description of a domain--a particular
universe of discourse--to understand the user's statements, fill in omitted details, and
maintain consistency.

APPROACH

Functionally, the two most important characteristics of our ruroposed system are its
independence from any particular problem domain and its attempt to deal directly with
nonprofessional computer users without the interve.tion of computer
programmers--choices which have largely dictated the direction of the project. Domain
independence requires that the domain "physics"--its objects and their relationships
with other objects, its laws, its transformations, and its constraints--be available in a
processable form within the system and that the system be general enough to deal
effectively with a wide variety of such physics. Direct interaction with nonprofessional
computer users means that both the physics and the problem statements will be in
problem-oriented (as opposed to computer-oriented) terms, preferably in natural
language, and that they will be "loose" descriptions containing incomplete, inconsistent,
and irrelevant statements rather than a precise formal structure. The primary goal of
our systen, is to acquire from a dialogue with the user the physics of the loosely
defined domain, structure it, and use it to understand further communication specifying
an application, to remove the imprecisions from the specifications, and finally to
organize the separate pieces into an operational and testable specification which
accomplishes the user's stated task.

The constraints and restrictions of the computer have increasingly been
incorporated into programming advances for several years. They are manifest in better
languages, automatic storage mechanisms, and optimizations of many forms. On the
other hand, the structure, constraints, and limitations of the problem domain have
generally not been incorporated into programming systems. A major theme of
automatic programming (in fact the characteristic distinction between it and conventional
programming) is the use of such knowledge--an issue which raises a number of
questions. If the system is to understand something of a domain, how is the knowledge

AUTOMATIC PROGRAMMING 26

on which this understanding is based to be represented? What procedures can be
made available for exploiting this knowledge in guiding the system's interaction with a
user and in generating programs? How, in particular, is the essentially nonprocedural

information in constraints and limitations to be reflected in a procedural form? What
can be done to help identify inconsistencies? How can the system be given a capacity
for inference similar to that which forms the mainstay of human communication and
which allows obvious details 'o b- left unspecified? Will the system be able to
understand its own products we.i enough to be able to modify them in response to
changed requirements? Answers tri these questions define the front on which
important advances in specification acqL;sition and analysis will be made.

Our system contains four knowledge bases: knowledge of specifications and their
structure (how specifications are organized from parts, what constitutes a well formed
specification, etc.), knowledge about application specifications and their acquisition (what
kinds of imprecise specifications are used, how the resolution of one imprecision may
affect the resolution of another, etc.), knowledge about domain descriptions and their
acquisition (what constitutes a well formed description, how information from such a
description can be used to resolve an imprecision or affect the program organization,
etc.), and finally knowledge about a specific domain (such as what objects exist, how
they are related to other objects, what actions are performed, what constraints exist,
etc.). Of these four knowledge bases, the first three are fixed. Only the last, the
knowledge of a particular domain, is acquired and changes from ptoblem to problem.
This is feasible because the domain description knowledge base defines the form of the
acquired description--basically as a ?"niverse of types and interrelalionships between
them. It is through such a simple model that we can concentrate on imprecision removal
and program organization rather than confusing these with the specifics of a particular
domain.

To concentrate on this knowledge extraction and domain structuring activity, we
have assumed the existence of a natural languige parser which transforms the user's
input into a parsed case structure. Such a parier is currently beyond the state of the
art, but this goal is actively being pursued by other groups and we expect it to be
available by the time our project is ready to assemble a total system. Until then, we
are manually transforming the natural language input into the case-structured form
required. If such a parser does not materialize, we would have to use a more
restrictive and formal subset of natural language.

As a second means of limiting the scope of our work, we have decided to omit
efficiency concerns for the operational specifications generated; we have focused on
generating a logically correct operational specification for the user's needs without
attempting to optimize it. This has greatly simplified our effort by allowing us to

' 3m, ..' .. .4 . .| . . =..... ' ' .".. -' % --, ,,, :...

AUTOMATIC PROGRAMMING 27

directly model the user's domain in a data-representation-free manner through an
associative data base, and hence obtain operational specifications which are rauch closer
to the user's conception of the problem. By not having to introJuce extraneous details
(such as data representation) during the construction phase, we have been able to
concentrate on the specification's logical behavior. Furthermore, we firmly believe that

such representation-free and behaviorly specified descriptions are the correct way to
specify applications and that optimization should occur during a separate and later
implementation phase (not part of this project). It is clear that such an approach would
greatly simplify the maintenance problem. The logical-behavior specification would be
modified and then reoptimized through reimplementation.

We are also limiting the range and type of domains allowed. In addition to size
limitations, these domains are characterized by such features as a rich structure ot
types, no parallelism, no second or nigher-order constraints or ihference rules, and no
time dependencies other than ordering.

The final and most important means of controlling the scope of the project and
thereby assuring orderly progress are 'he types and amounts of imprecision allowed in
the input. If no imprecision of any type is allowed, then the input is already in a formal
programming language and though no work is required to output an operational
specification, the notion of dealing with nonprogrammers has completely disappeared
and all that has been produced is the design of a better (or worse) program
specification language. On the other hand, if no restrictions are placed on the
imprecisions allowed in the input, the task clearly becomes infeasible. Between these
two extremes can be determined an allowed level for each type of imprecision which so
significantly simplifies program specification that nonprogrammers can deal directly with
the system while keeping the task of removing these imprecisions manageable.

Two valid scientific questions have been raised by our approach. The first
questions the viability of a domain-independent approach at this time. The concern is
that not enough is known about domain descriptions and how they differ to build a
domain-independent system. We feel that by attempting domain independence we force
ourselves to address the issues of domain structure and of obtaining guidelines from
this structure without allowing a particular structure to become embedded in our
system. Also, by removing representations from the specification, we have removed a
great deal of dependence on the particular domain structures.

The second question assumes that the first has been answered and therefore that a
domain-independent system such as ours can generate unoptimized representation-free ,
programs. It questions whether automatic optimization of such programs is possible.
This is primarily en issue of data representation selection. Other research groups, most

AUTOMATIC PROGRAMMING 28

notably Rochester, are concerned with these issues. They are, however, primarily
concerned with implementation representation of logical structures such as sets or lists.
A higher order representation selection issue exists which addresses the logical
aggregation of data--what items should be collected together to form a record, what
aggregations should be treated as sets, how they are accessed and ordered, etc. Such
work is unfortunately not currently being investigated. However, three of the four
possible benefits of our project are independent of such work. Only the use of our
output specification directly as a practical programming language requires the automatic

representation selection problem to be solved.

SPECIFICS OF THE APPROACH

We are building a system with two major components: Domain Acquisition and
Model Completion. The former sequentially processes a set of statements describing
the user's problem and the domain in which it exists. It is responsible for extracting
from these statements the description of the object being manipulated, the actions
performed on them, the criteria necessary and sufficient to perform these actions, the
constraints which must be satisfied, and the rules for inferring information not explicitly
stated. This information may be given directly, may be inferred from example usage, or
may be assumed in order to make sense of the input. Some of this information may
have been previously acquired and saved in a domain description.

This component is implemented through a production system in which each
transformation rule has a pattern which, if found in the input, activates the rule. An
activated rule will typically assert some extracted knowledge in the associative dats
base and rewrite the input with the extracted information omitted or transformed. This
activation process is continued until no rule matches the (transformed) input. Then the
next input is processed.

A production scheria was chosen because of its orientation toward case analysis. its
facility for expanding as new rules are added, and its ability to accept manual
transformations for unimplemented rules (see the Accomplishments subsection).

During these transformations, when an ambiguous interpretation is noted, one of
three actions is taken: the problem can be kept for later processing in the hope that
new information 'ill resolve the ambiguity; the user can be directly asked to resolve
the ambiguity; or the system can establish a backtracking point, assume one
interpretation, and be prepared to back up and assume the other. Currently, only the
first two options are used, since our system has no backtracking capability. ,J

AUTOMATIC PROGRAMMING 29

The Model Completion component is responsible for all interstatement processing.
!ts main function is to form a precise operational specification by organizing the actions 31
referenced in the individual statements into an appropriate control structure. These
actions are organized into sequential segments or asynchronously activated daemons in
a two-stage process. First, the needs, requirements, and results of each 3ction are
analyzed to determine any implicit ordering restrictions. This partial ordering is then
merged with any explicit partial ordering specified in the input to produce the final
ordering restrictions. The second stage determines which actions should be treated as
asynchronous daemons and removes them from the oruering. It then attempts to find a
total ordering consistent with the restrictions. Finally, all action descriptions, action
invocations, and object references are transformed into an executable form.

RELATION TO OTHER WORK

Our project is related to other similar work primarily at MIT, St.inford, and IBM
Yorktown. The MIT effort is aimed at producing highly optimized programs for a
specific domain through built-in knowledge of the general methods and techniques of
the domain particularized to the user's needs. Thus, although both our domain
descriptions are similar, we focus on acquiring this description and determining logical
behavior; they, on the other hand, take these as given and are concerned with
particularizing them and choosing an optimized method. The work at IBM is very similar
in approach to that of MIT, though for a very different domain. It also differs from the
latter in that it conceives of two systems, the first of which is a programming language
designed specifically for the domain which embodies the current knowledge of model
particularization. When this system is completed, a user will be able to specify his
problem as a specialization of the domain and be questioned by the system for the
particulars. This will enable the efficient generation of users' p'ograms, although the
language and interactions are formalized. The second IBM system attempts to use a
natura! language interface to loosen this rigidity.

Both of these efforts, like our own, are aimed at nonprogrammers. The Stanford
project, however, is aimed at reducing the amount of detail that a programmer must
specify to generate a program. It is thus concerned with different methods of
specifying an algorithm, such as by input/output pairs, traces, predicates, and/or
description. It is also concerned with programmer areas such as list processing and
sorting rather than user domains, as are the other projects.

OF

AUTOMATIC PROGRAMMING 30

ACCOMPLISHMENTS

1. Semi-automatic acquisition of a real-world example domain. Our system, with
the help of a small number of manual transformations (to be removed later as
description of a real-world domain and extracts a processible description of the domain

in terms of the objects, their relationship with one another, the actions they participate
in, and the constraints they must follow.

2. Acquisition of types, events, and relations. As part of the above domain
acquisition, the system identifies examples of types, events, and relations in the input
and builds descriptiorn, of them. For instance, use of a relation or event (verb) with
new cases (English keywords identifyirg an argument) and/or argument types causes a
more generalized description of the relation or event to be constructed.

3. Discovery and implementation of the "knowledge acquisition" heuristic. When a
relation instance is asserted to be true, the relation may have several preconditions
associated with it which, if not satisfied, indicate a contradiction. If one or more are
known to be false, then a true contradiction exists and the assertion is not allowed.
However, if a precondition can be i,either proved nor disputed--which is the most
common case when new information is being acquired--then the "knowledge acquisition"
heuristic states that it should be assumed true. This heuristic enables the system to
acquire information "by side effect" through additional structure necessary to support
explicit information.

4. Requirement analysis and input/output determination. An implemented part of
Model Completion analyzes the requirements and results of each event (currently
hand-generated) to determine a partial ordering of the events necessary to ensure that
requirements are produced before being required. This partial ordering will eventually
be merged with explicit ordering statements from the user to produce an ordering space
within which a total ordering for the generated program can be found. This analysis
also determines input and output data for the program by finding, respectively, the data
used but not produced, and the data produced but not used.

5. API. Our AP system is based on an associative relational data base. The
assertion and retrieval mechanisms necessary for such a data base have been
incorporated into API--an extension to INTERLISP. API also includes mechanisms for
maintaining the consistency of the data base through constraints and for implicit data
through inference rules applied when required data is not found explicitly. AP1 is also
intended as the language in which we generate programs so that they can also utilize an
associative relational data base. Through a reimplementation cf the data base, an
order-of-magnitude improvement in speed was achieved.

AUTOMATIC PROGRAMMING 31

6. Transformation debugger. We have implemented and are using an interactive
debugger for production systems which raises to the transformation level debugging
facilities normally found only at the language level. It records the action associated

with each transformation, enables conditional breakpoints to be inserted in or between
transformations, enables manual transformations to be built and remembered, and
eventually will allow back up to previous states. This greatly facilitates our style of
example-driven constructions of the transformation rules. That is, rules are built only
as needed, but are made more general than the specific example demands.

7. Programmer'"s interface. While looking for a suitable implementation language,
we designed and built a mechanism for transforming interactive programming languages
into programming systems by utilizing the programming tools and environment already
constructed for INTERLISP, although this was not directly related to project goals.
While useful in itself as a means of increasing programmer productivity, this work had
its real significance as a model for ARPA's National Software Works project.

CURRENT STATUS OF PROJECT

The Automatic Programming project was terminated at the end of the current
reporting period. It will be superseded by the Specification Acquisition from Experts
(SAFE) project, whose plans are as outlined below.

We have decided to develop our system in the context of a real-world (albeit
simplified) problem. We selected the militarily significant domain of first-level message
distribution, and have extracted from an Army functional specifications manual a short,
simplified, and ve-ry high level loose description of an implemented system.

With the help of some manual transformations this description has been processed
and analyzed by the Domain Acquisition component. The Model Completion component
is largely unimplemented, but (as mentioned earlier) one part which takes the
requirements and results of the actions described and produces the implicit partial
ordering is working. Furthermore, it identifies the inputs and outputs of the system by
finding, respectively, the information used but never produced and the information
produced but never used.

3

AUTOMATIC PROGRAMMING 32

In FY76 we plan to finish the mressage distribution example and to select and
present to our system three different real-world domains of approximately the same
size and complexity as the message distribution domain. Such domains are
characterized by:

a. Natural language specification of about one typewritten page for the combination of
domain and problem (this must be manually transformed into our actual input
language).

b. Input specification must adhere to system's imprecision conventions.

c. Input specification must adhere to system's domain restriction conventions (such as
no parallel control structure, no second order constraints or inference rules, etc.).

d. Not more than 25 object types, 15 relations on those object types, 10 actions, and
100 to 150 total instances of all objects (first 3 restrictions limit size of domain
which must be understood, while last restriction limits size of domain which must be
executed and is designed to prevent overloading either the associative memory or
LISP memory).

As we address new domains, more transformations will become necessary to handle
new situations previously unencountered. The new transformations may interfere with
the existing ones. We will have to identify and resolve such conflicts.

The main goal of these studies will be to determine the generality of our system in
terms of the amount of overlap, and the amount of conflict, with existing facilities. In

some sense, we must develop an estimation of the size of the "vocabulary" (i.e., the
facilities) needed to handle domain descriptions. We will also be studying how to
specify a domain and application and how to represent them in the system.

This understanding of domain and application descriptions will allow us to accept
more imprecise and incomplete specifications by resolving or filling in information from
information specified el:;ewhere and through knowledge of domain structures and
interrelationships. We will continue to push on this front until we can handle
specifications typically found in functional specification manuals.

If we were totally successful in attaining domain independence, then new domains
could be accepted without any modification of the system by merely providing their
domain description. We do not expect to achieve such a level of independence.
However, our goal is to minimize such modification so that by the end of FY76 we can
acquire and handle a new domain of roughly the size and complexity of the
message-distribution domain in less than a week.

......... . tf l
AUTOMATIC PROGRAMMING 33

In FY77, while continuing to develop the facilities described above, our main focus
will be on the sizing issues raised by dealing with large unsimplified re., world
problems. Tnhe problems of enlarging size arise with almost all aspects of the
problem: the problem specification and vocabulary, the number of ambiguities and
number of interactions with the user, and the possible interactions between the
specified actions, etc.

Dealing with large domains is critical, however, if the project effort is ever to pay
off. In large programming efforts, communication problems between team members

abound, compatibility and consistency are of paramount importance, and the complexity
is overwhelming for any individual. This situation is tailor-made for automation of
specification acquisition, analysis, consistency and completeness validation if we can
provide a system which scales up from current laboratory demonstrations.

Assuming that the system has been sized to handle significant real-world problems,
in FY78 we would like to work with a military user to acquire, analyze, and debug the
specification of a task currently being implemented within the military. Since the
program specification prod-.-.x would be highly inefficient, we would expect it only to
be used to test that the specification matched the user's intention, that is, that the
specified system behavior matched the desired behavior. This is not normally the case
in real projects where the number of errors and inconsistencies in a specification
usually exceeds those produced in the implementation. Having a testable specification
would go a long way in reducing such design errors before implementation began.
Furth-,.more, as a precise operational specification of the problem, the specification
itself or natural language paraphrase of it could be used to resolve for the human
programmers any ambiguities in the original specification.

I!

I.

:1 V
34

PROTECTION ANALYSIS

Research Staff: Richad Bisbey II

Jim Carlstedt

Consultant: Gerald J. Popek

Support Staff: Betty L Randall

THE PROBLEM BEING SOLVED

During the past decade some computer manufacturers have claimed that certain of
their general-purpose operating systems (i.e., systems with generalized
information-sharing facilities) were secure and could be used to Ztore, process, and
protect classified or sensitive information. Unfortunately, these claims are overly
optimistic; a general-purpose operating system that is secure against malicious attack
does not actually exist in either the commercial sector or the research community. The
problem lies partly in both faulty design and faulty implementation. While long-term
research is progressing in the design of secure systems and the verification of
software, the computer user will not feel its impact for several years. Currently there
are more than 6000 computer systems in the DoD and its contra.tor facilities, covered
by the DoD Industrial Security Program. Many of these facilities require resource
sharing at multiple levels of security, but cannot achieve it because of operating system
vulnerabilities. (By "vulnerability" we mean a protection error that allows the integrity
of the system itself--and thus its protection mechanis,--to be compromised. System
integrity is obvious!y the most critical aspect of operating system security, since
without it the protection policies of the system with respect to the integrity and privacy
of the user's data cannot be assured of correct or complete enforcement.) The goal of
this research is to help remove these vulnerabilities by developing efficient techniques
and automatable tools for detecting them. There is very clear evidence in the military
regarding the lack of multi-level security at the operating system level. The cost to the
military in not having such security is high in dollar expenditures and in risks to
classified information.

In what follows, the terms "techniques" and "tools" are used to denote error-finding

aids developed by the project. The former denotes general methods or strategies,

'\ - A

PROTECTION ANALYSIS 35

while the latter denotes procedures for applying these methods or strategies. The
procedures are expressed in varying degrees of formality, and are not written in any
particular programming lar.guage. Computer programs that implement them are
necessarily specific to particular operating systems and thus are the responsibility of
the users of these tools.

RELATIONS TO OTHER WORK

The work described here is only one of a number of existing or potential efforts to
improve the security of operating systems. Perhaps the best way to indicate this
project's relationship to other work is by means of a "subject tree" showing its position
in the total field of computer security. (See Fig. 4.1.)

COMPUTER SECURITY

Physical installation
Operations and maintenance personnel
Communication facilities
Storage facilities
OPERATING SYSTEMS (PROTECTION)

Theoretical studies
Design of new systems and mechanisms
ENHANCEMENT OF EXISTING SYSTEMS

Design modification
ERROR DETECTION

Formal verification
INFORMAL METHODS

Dynamic methods (penetration testing, auditing)
STATIC ME fHODS

Evaluation activities
TOOL DEVELOPMENT

Simple debugging techniques
ADVANCED AUTOMATED AND SEMIAUTOMATED TECHNIQUES

Figitre 4.1

- ii
PROTECTION ANALYSIS 36

This is only a rough taxonomy: there are many other ways to categorize work in
the security field, and many projects include work in more than one category.
Nevertheless, it does indicate areas of actual and potential work and the relationships
between them.

The distinction between operating system security and other aspects of computer
security needs no explanation here. There is much current activity in this area, some
of it concerned primarily with attempts to gain a better unde:rstanding of basic problems
and possibilities (e.g., the work at Rutgers University), some with the design of new
systems incorporating more advanced protection schemes (e.g., the work at
Carnegie-Mellon University, the University of California at Berkeley, and UCLA), and
some with the enhancement of current operating systems. The latter category consists
of both redesign work whose goal is essentially the same as that of new-system design
(e.g., the effort at MIT to identify a minimal security kernel for Multics) and work
concern . i with the problem of error detection.4Error detection methods can be classified first of all as either formal or informal. In

the former category is verification of software in general via "proofs of correctness"
(e.g., the work in this area at ISI), with verification of operating systems presenting
special problems (being studied at Stanford Research Institute). Informal methods,
typified by traditional debugging techniques, fall into two major categories: (1) dynamic,
involving the execution of the target program or system, and (2) static, relying primarily
on the analysis of program listings and system documentation. Dynamic techniques
have been widely used to find protection errors, either by includir; special auditing
routines in the system itself or by employing "blind" penetration techniques (e.g., earlier
work at System Development Corporation).

penetration attempt is more likely to succeed if it employs static as well as
dynamic techniques (e.g., earlier work at Rand and ISI). When the object is to produce a
more general evaluation of the security of an operating system, a large-scale
penetration effort may be launched to find as many errors as possible in a target
system (e.g., current work at System Development Corporation and Lawrence Livermore
Laboratory). Currently, such error detection activities rely more on the organization
and expertise of their personnel than on the effectiveness of their tools. This is an
expensive and, we believe, unnecessary situation. For this reason, ISI's Protection
Analysis project is engaged in an effort to develop more effective evaluation techniques
and tools, primarily those that can be used in the static mode by people with less

knowledge of security considerations.

PROTECTION ANALYSIS 37

APPROACH

The approach taken is an empirical one, based on two observations:

1. Protection errors fall into distinct classes or "types." Errors of the same
type appear many times, not only in functionally different portions of the
same operating system, but in different operating systems as well.
Furthermore, there is reason to believe that the number of error types
representing vulnerabilities in operating systems is finite and
small--probably not more than 25. This is based on an initial analysis of a
number of errors from a variety of operating systems including OS/360,
GCOS, Multics, Exec-8, and TENEX and error categorization efforts by IBM
[1] and others [2]; it is supported by the proposition that system integrity
depends on a quite limited number of design requirements.

2. "Error patterns" representing error types can be used as effective criteria
for searching for protection errors of those types. We have experienced,
and witnessed in others, a large difference in effectiveness between a
"blind search" and a search for errors of a particular well-described type.
We have observed that even persons with no previous experience in
protection analysis can find protection errors when given a specific error
pattern to guide their search.

The approach is thus twofold: (1) to derive the error types and (2) to generate for
each error type a tool or technique that can be applied in an automated or
semiautomated fashion to find protection errors that are instances of that error type.
Error patterns are the common vehicle for the approach.

To derive the error types, descriptions of protection errors are initially converted
into error patterns by ',isting the minimal set of conditions that constituted the original
error. Each pattern is generalized by substituting more generic or abstract features
for their more specific counterparts and by deleting qualifying details, both without
affecting the essence of the conditions themselves. This process results in a hierarchy
with the most general and abstractly described patterns at the upper levels and the
most specialized and concrete ones at the lower levels. The converse of generalization
is "instantiation," where a pattern is transformed by substituting for more general
features the more specific counterparts that occur in particular classes of operating
systems or particular functional areas, resulting in a more concrete pattern.

PROTECTION ANALYSIS 38

Conceptually, an error pattern forms the reference input to an automated or
semiautomated error detection algorithm that is general-purpose in the sense that it can
be used to find instances of the corresponding error type in any of a large class of
operating systems. Prerequisite to automating such an algorithm is the definition of a
*comparison language" whose objects are the features of the pattern and whose
structure and notation are suitable for expressing relevant portions of the target
system. The error detection process thus consists of two steps: (1) the "normalization"
of the operating system by filtering out irrelevant features and mapping the relevant
features into the comparison language and (2) searching the normalized representation
for feature combinations matching the given pattern. The first step is
system-dependent, but can be partially automated in at least some cases. The second
step *s system-independent and in principle can be fully automated. For convenience
and relative simplicity, the choice of a comparison language and the design of
normalization and comparison algorithms are done on a pattern-by-pattern basis.

PROGRESS

Work on pattern-based protection evaluation was begun in Ortober 1973. The
following has been accomplished:

1. Project design. The need and potential utility of such a project were
evaluated, the approach was develped, and the major tasks--pattern data
base development and design of normalization anl error detection
algorithms--were defined in terms of processes, information flow, and
associated problems.

2. Collection and analysis of protection errors. Informal descriptions of
protection errors from a variety of operating systems, including OS/360,
GCOS, Multics, Exec-8, and TENEX, were collected and initial versions of the
corresponding first level-patterns were generated for these errors.
Several of the first level-patterns have been generalized.

3. Feasibility test. To test the feasibi!ity of the approach, an experiment was
conducted in which a single pattern was applied to portions of the Multics
operating system. The experiment was carried out as follows: An error
type was selected for which pattern features could be fairly easily
described. A set of guidelines were stated for recognizing instances of
this pattern. The guidelines were applied manually to several microfiche
listings of Multics source code, resulting in the discovery of several
security errors.

_ PROTECTION ANALYSIS 39

4. Prntotype error detection packages. A computer program was written to
automate much of the error detection process described in item 3. Source
copies of portions of the Multics operating system obtained via the
ARPANET were processed by the program, and the output was manual'y
examined for errors. Previously unknown security errors were found. A
second prototype package for discovering errors of a different type has
been built and is being tested.

5. Reporting. A research report describing the approach was prepared [3],
together with a detailed report describing the first error type and
prototype programs used in the Multics experiment [4].

RESEARCH AND DEVELOPMENT

The Protection Analysis project will continue the development of effective,
economical, and reliable detection techniques and tools for security errors in operating
system software. As indicated above, this work falls into three categories:

1. Error collection and analysis. The purpose of this activity is to extend the
pattern data base "horizontally," in order both to identify new variations of
existing patterns and to increase the potential coverage of the techniques
developed with respect to the error types to which they may be applied.

2. Pattern analysis and data base development. The data base must be
extended not only "horizontally" but also "vertically" by generalizing
existing patterns to the more abstract levels at which interpattern
relationships are more easily recognized and at which error types can be
most effectively identified and represented. While this requires careful
analysis, it yields insights valuable lo the invention of error detection
algorithms, simultaneously improving the quality of the patterns themselves.
Expansion of the error pattern data base will necessitate the continued
development and refinement of a formal notation to express patterns in
terms of both the protection policy and the error conditions.

3. /lgorithm development. As indicated earlier, this is actually a set of
activities, one for each error type. Our plan is to concentrate on that type
or those types for which the payoff/cost appears to be gr,atest, where
payoff is estimated in terms of the "exploitability" of errors of this type in
existing operating systems and where cost is a measure of the difficulties
anticipated in algorithm development. Depending on the error type, the
difficulties here can be substantial; the conditions of the search pattern

- .,*.* -~- .- *,,**"*** *'s,,. ** ~ -

II

PROTECTION ANALYSIS 40

must be expressed in terms of static features that can be recognized in a

system description, rather than dynamic features that have representations
only in an executing system. There is, moreover, little precedent to draw
on for techniques of operating system normalization. Fortunately, byIrelaxing somewhat the conditions of a pattern, it appears that normalization
difficulties .. n sometimes be eased considerably at the expense of some
additional screening of error detection output.

4. Transfer documentation. Much of the documentation will originate during
the development activities themselves. However, a final set of user
guidelines will be required when the development of a prototype has been

effectively completed. We also include in this category interim reports on
error types and patterns, detection techniques, system fixes, design
implications, and general protection insights.

IMPtACT

The work described here will have an impact in several areas. Most immediate, of
course, is the impact on evaluation activities for existing operating systems with respect
to the reliability of their security mechanisms. The empirical basis of the technique
makes it easy to incorporate new error types as they are identified and as algorithms
for them can be developed. The techniques can thus be used also in computer
acquisition as one of a set of standard tests which must be met for system acceptance.
Continuing back up the "subject tree" displayed earlier, we can anticipate impacts at
every level. As seen in the Multics example (4], static pattern-directed tools can also
suggest corresponding dynamic error-detection techniques. By negating conditions
found in error patterns, assertions can be identified for use in formal verification of the
protection aspects of operating systems. Along the same line, the data base of error
patterns is useful in the repair or modification of existing systems; since a pattern is the
minimal set of conditions that must hold for an error of that type to be present, repair
is simply the negation of at least one of the conditions. Similarly, the pattern data base
forms the basis for a "best practices manual," i.e., a list of errors that should be avoided
in the design of new systems and protection mechanisms. Finally, the analysis needed
to derive error patterns, to generalize thmr,, to qbstract levels, and to develop
associated error detection algorithms yields insights thai contribute to a deeper
understanding of protection itself.

PROTECTION ANALYSIS 41

I

REFERENCES

1. McPhee, W. S., "Operating System Integrily in OS/VS2," IBM Systems Journal, Vol.
13, No. 3, 1974, pp. 230-252.

2. Anderson, James P., Computer Security Technology Planning Study, U.S. Air Force,
ESD-TR-73-51, Vol. 2, October 1972.

3. Carlstedt, Jim; Bisbey II, Richard; Popek, Gerald, Pattern-Directed Protection
Evaluation, USC Information Sciences Institute, ISI/RR-75-31, June 1975.

4. Bisbey II, Richard; Popek, Gerald; Carlstedt, Jim, "Inconsistency of a Single Data
Value Over Time," USC Information Sciences Institute, 1975.

S. I

II

* ' -.. y i, a ii~

42 I:
INFORM ATION AUTOMATION

Research Staff: Donald R. Oestreicher
Robert iI. Stotz

John F. lleafner
Richard C. Mandell
Jeff Rothenberg
Ron Tugonder

Research Assistant: Larry Miller

Support Staff: Katie Patterson

* INTRODUCTION

Military command and control technologists are faced with a tremendous cha!lenge.
With the increasing sophistication of weapons systems and dcicreacing time frame for
making decisions, it is essential to provide the military commander better quality
information faster, even though manpower has been reduced by the c'zgversion to
ali-volunteer forces. With today's technology, messages can traverse se.-'eral thousand
miles in fractions of a second, but hours are lost at either end, both in entering the
message into the communications system and in delivering it to the man who can act on
it.

The IA project is studying the application of on-line, interactive computer
technology to the military message handling problem and is preparing an operational
test. On the basis of the ARPANE'i message system experience, we are confident that
such a service has a high payoff to the military. Not only can formal message
preparation and delivery become faster and more reliable, but the processing tacilities
",,' %ided can also be put to new use. For example, with such a service the status of a

message is automatically available at all stages from prepar-; ion to delivery. Much
more detailed accounting and auditing is easy to maintain, providing a better
understanding of the basic communication process. Entirely new facilities become
available as well: for example, using the message service to alert individual users
when certain events have occurred (e.g. "the message fror, Capt. Jones that you
were expecting has arrived"). Automated suspense fles, caler jars, etc., are also simple
to provide.

Perhaps most important contribution of such a system is that it makes available a
secure, informal (off-the-record) message facility. This electronic memo pad is swift
and convenient to use and, unlike the telephone, does not require simultaneous attention
of sender and receiver.

INFORMATION AUTOMATION 43

The project is specifically directed to the military communication environment, and

even more specifically to nonexpert u. "rs. The most effective way to introduce such a
service into the military community is by means of an operational test at a military site,
which will serve a twofold purpose: It will demonstrate the utility of an on-line message
service in an environment credible and comprehensible to military planners, and al;ow
system builders to understand the impact of such a system on the user organization and
to evaluate the cost vers ._ rienefits of its various features.

BACKGROUND

Although the IA project actually began in the fall of 1973, its roots reach back to a
three-week study, conducted on behalf of ARPA, of the military comr-unications on the
.sland of Oahu [1]. This study was initiated at the request of the Secretary of Defense
for Telecommunications as a part of a Navy program called COTCO, whose mission was
to consolidate and imorove communications on Oahu. Until ARPA'S involvement, COTCO
advocated conventional data processing solutions. The ISI report, which recommended a
comp!ete island-wide interactive writer-to-reader message service elecrically coupled
to AUTODIN (the military's backbone communication system), was submitted by ARPA to
DoD, where it excited considerable interest but was generally regarded as too radical to
be included in a production system without a better appreciation of its cost and
benefits.

INFORMATION AUTOMATION PROJECT

Against this background the IA project was started at ISI in the faii of 1973 with a
twofold goal: 1) to develop the technology for providing on-line computer services
directly to users who are neither specialists in computer science nor specifically trained
operators and 2) to develop an on-line, interactive, writer-to-reader message service
for the military community. The two goals are in fact indivisible. The miltary action
officers who send and receive messages are not computer specialists. For the service
to be useful, an interface must be provided that knows a great deal about each
individuals habits, thus making his use of the service seem easy and natural to him.

Military Message Service

In the military, formal messages are archived for posterity, along with pertinent
signoff data. Reference 2 describes in some detail how formal messages are handled
today and how they are to be handled by the proposed IA message service. The
concept is to put action officers directly on-line to a mes:;ave service that provides
interactive assistance tor formal messages from the initial draft preparation through
review and rewriting (the process termed coordination), through transmission and
distribution to eventual recipients and finally to archival sLrage. In addition, the IA
message service will provide informal "off-the-record" communication between users, a

INFORMATION AUTOMATION 44

service now unavailable (except by telephone or personal contact) but considered very
valuable in accomplishing daily tasks.

Such an on-line message service, new to the military, allows coordination on draft
messages without requiring face-to-face meetings, and permits rapid and secure formal
or informal written communications. The anticipated benefits of this service are as
follows: easier and faster message preparation and delivery, improved efficiency of
action officers' time, better information dissemination, better understanding of
information flow, and reduction of clerical load.

While these benefits all seem worthwhile, there is skepticism about whether they
would in fact be realized. Before military decisionmakers are willing to invest in such a
new facility, they would like to know the service's real value in an operational situation.

* As mentioned in the Introduction, the n.echanism planned to determine this value is a
formal test of the service in a working military environment, from which we hope to
learn what features are valuable, how the service is used, and how it affects the way
the user organization does its business. This information is essential for long-range
military communications planning and for proper implementation of production systems.

The need to conduct this test has focused the IA project on designing a service that
can be put into an actual military user environment. This focus requires a great deal of
attention to functional performance, user interface, reliability, security, and scalability.
This emphasis is required because current ARPA research products have not sufficiently
addressed these issues for operational military environments. Also, to maximize the
test results, the IA project has paid much attention to flexibility in introducing the
service to users aid in instrumentation for obtaining meaningful data about the effects
of the system on users.

Functional Performance

To be a success, an on-line message service must provide the improvements
inherent in automation ,;thout overly disrupting the traditional patterns and procedures
that, ,hough not ideal, are known to work. The manual nature of today's message
service is somewhat cumbersome, but it is extremely flexible; each command or
organization is able to tailor its procedures to its own needs. One of the unique
characteristics of the IA message service is that it provides this tailorability.

To adequately support military message handling the organizational structure of the
user community must be reflected in this service. For example, the rules about who can
access what message files and who can release what messages must be carefully
modelled. By definition, formal military message traffic flows between commanders of
organizations, even though the messages nearly alwF';s originate and terminate at much
lower levels. This necessitates special "coordinaion" or "staffing" procedures on
outgoing messages (which require approval up the entire chain of command) and
complicates the distribution of incoming messages. The IA military message service is
unique in its approach to these problems.

*" , .i

INFORMATION AUTOMATION 45

It is also necessary that the on-line service be easy to use. It is certainly easier to
type "send for coordination" than to hand-carry a draft mLssage around to each
coordinator. However, by automating this transmission we are faced with making the
use of terminals competitive with paper and pencil. Toward this end the IA project is
developing scanning and editing aids that currently do not exist. For instance, tc
facilitate integration of comments and changes from several coordinators, the service
offers the ability to compare two versions of We same paragraph on separ ate windows
of the CRT screen, highlighting the differences by making the changed characters
brighter.

The proposed IA message service is divided into two stages: preparation and
delivery. The former stage includes the creation of the draft message and the

coordination of this draft with other users until it is signed off for release. For this
stage the IA message service provides a special-purpose editing program which
understands message formats and checks that the contents of the various fields are
legitimate. The editor is structured so that a coordinator's editing of a message is
stored as a special change file rather than as actual modifications to the original.

The author of the draft message controls the sequence and timing of delivery ot the
draft to coordinators. The message can proceed serially or in parallel (or any
combination of the two). The author can have the message returned to him after each
signoff (so he can incorporate the changes), he can ask that he simply be notified after
each signoff, or he can let the coordination delivery proceed automatically.

Often a coordinator of a message wishes to obtain the opinions of others on his
staff before he signs off. The IA message service allows the coordinator to "delegate"
to as many people as he wishes the capability to comment and edit the message (each
delegate edits from the original and creates his own change file). If so inclined, the
coordinator may also delegate the signoff responsibility, but this is restricted to a single
delegate only. The message service may retain all of this delegation information for
audit purposes. During Phase 2 of the IA development (see the Project Plan subsection)
this delegation facility will be extended to permit a user to specify in advance the
criteria for selecting messages to be delegated to others. The service will then
automatically perform the delegation whenever a message meeting these criteria is
received.

This coordination process can be iterated as often as necessary, with each version
being coordinated independently. A major research goal of IA is to learn more about
the coordination process and about how to structure the computer-aided environment to
enhance the effectiveness of this coordination.

The delivery stage involves conveying the message to its ultimate recipients,
archiving it, plus providing aids for the user to sort his messages, scan them, and file

them for later retrieval. The first step in this process is to determine distribution for
the message. Because of the military policy that all formal traffic flows between
commanders of organizations, it is necessary to employ complex procedures to
determine the real ultimate recipients. The IA message service extends the normal

INFORMATION AUTOMATION 46

"one-pass" distribution algorithms provided in current AUTODIN terminals (e.,:, LDMX) to
allow each user to add his own personal distribution determination. A special form of
distribution determination provided by IA, called Guarding, allows a user to specify
criteria for messages that are to be routed to the first "on-line" user on the guard list.
This assures that incoming messages meeting these criteria will be delivered to a live
person who can act on it immediately.

A different form of special handling offered by IA is the alerting mechanism, which
allows users to specify criteria for messages that will cause immediate action on the
user's screen when they are re.eived. This will notify the user of the event

immediately, if he is on-line, or as soon as he comes on, if the event occurred while he
was off-line.

Message selector criteria can also be applied to incoming messages to sort them into
"folders" for the user. This provides the electronic analog of file cabinets. Since the
message service can retrieve messages rapidly, these users' folders actually store only
citations to messages, rather than the messages themselves, which limits the computer
storage required to easily manageable size.

User Support

The ARPANJET experience provides ample evidence that computer scientists can use
on-line systens effectively with little or no formal training in their operation. There
are also many examples of systems used every day by nonspecialists who have had
intensive training (e.g., airline reservation clerks). To be effective, however, a military
message service must be usable by non-computer people (action officers) with minimal
formal training. Few officers spend more than 10 percent of their time in
message-related functions; moreover, the present effort requires no specialized training.
No on-line message service will be used in the military if it is not virtually self-evident
and highly supportive whenever the user has any questions or difficulty. The IA
project is focusing on this problem as a central research issue.

The approach chosen to provide the necessary support for the user who is not a
trained operator or a computer specialist is to interface him to the message service
through an "intelligent front-end process" which we call his "Agent." This Agent makes
the service appear consistent to the user. It is designed to handle all control
procedures (e.g., editing, help, defaulting, er or handling, context mechanisms, etc.) in the
same place and therefore in the same way throughout all phases of the service. This is
a major source of difficulty in the current TENEX message facilities. The Agent and its
components are described in detail in Refs. 3, 4, and 5. Briefly, it consists of a
Command Language Processor, a User Monitor (with attendant background analysis
processes), and a Tutor..

Command Language Processor (CIP). This serves as the interoreter for user
commands operating from a dynamic input string and provides input editing
functions and screen control. To support the neophyte, the CLP has a strong
emphasis on error detection, recovery, and correction. ;t also acts as the

et 2,. ~. . ~~ "~w oe ...lWrlC. W N.

INFORMATION AUTOMATION 47

driver for the rest of the Agent, calling in the User Monitor and the Tutor
when appropriate. The CLP operation is affected by User Profile data which
provides information unique to each user.

User Monitor (UM) and Analysis Packages. The User Monitor collects data on
user performance and provides the User Profile data used by other parts of
the Agent (Tutor and CLP). Analysis programs process user performance data
to test hypotheses and modify the User Profile.

Tutor. This provides intelligent help to on-line users by explaining commands,
reporting errors, introducing new features, and providing reference
documentation. Tutor operation is also affected by the contents of the User
Profile.

The Agent is designed to collect specific data about the user's use of the service, to
make certain analyses of that data and, on the basis of the results, to recommend
changes to the way the user deals with the service or the way the service look; to him.
After we have gained actual user experience, we fully expect to have to change the
nature of the data collected, the way it is structured, and how it is analyzed. In this
process, however, we expect to learn a great deal about the critical parameters of a
man-machine interface and how to control them to maximi7e the user's performance and
satisfaction.

As an initial effort in this area a pretest of three message service language
forms--keyword, positional, and English-like--has been prepared. The goal of this
pretest is to learn user preferences in language form in order to "normalize" the
languages used (i.e., put each language on an equal footing with regard to the users and
the tasks) for a later comparative test of user performance. For example, if the
keyword language form required the user to type some long and irrelevant keyword
each time a particular operator were needed, the user would be unduly prejudiced
against the keyword language form. The Agent is designed to support multiple
command language forms and individual variations of them. This facility will be
employed in conducting the comparative tests and will be available for use in the
operational tests thereafter.

Reliahility

The IA project plans to make its message service reliable by making it a distributed
process across multiple host processors and by keeping redundant copies of the
service's basic files dispersed among these hosts. If any one host is down, any user
can then still be served. Since the processes are distributed, a user does not need to
run on the machine which stores his files.

In order to make this work, file naming conventions must be coordinated to inEure
system-wide uniqueness. In the proposed IA message service design there are three
distributed processes, ea~h of which controls a separate data base. The Coordination

INFORMATION AUTOMATION 48

Daemon controls all messages in preparation; the Transmission Daemon controls all
messages that have been released; and the User Daemon controls all user personal data
files Every host involved in the service has a copy of each of these daemons. When a
user logs on, he is assigned to a host by the User Daemon. That host's daemons
retrieve his personal files and then start up a job for him. This user job talks to the
daemons for all its subsequent message file accesses. This distributed nature of the IA
message service with redundant file storage provides the robustness required for a
military environment.

Security

Another important requirement for this service is that it must meet military security
specifications. While there are some systems-level issues not addressed by this
project, the service is being designed to a consistent model of the necessary access
controls to satisfy this need. Verification that the program actually matches the
security model will be performed only at the top level.

Privacy (control of message access on criteria other than security level) is another
major concern in a message service. The principal difficulty here is in eliciting from the
military a reasonable statement of what the rules should be. "Need to know" is a highly
judgmental quality and very difficult to model. The IA project plans to embody access
control mechanisms general enough to be applied to a broad set of models. When a
particular privacy model is elaborated, it should be easy to implement. Initially, the
service will support author-assigned access control at the message level.

Scalability

In the COTCO study it was learned that on the average day on Oahu, 6,000 formal
AUTODIN messages are sent out and 15,000 messages are received. To insure that
received messages get to the appropriate people, an average of 40 copies are
distributed. The CINCPAC communication center devotes a 24-hour-a-day printing
press to this function. To handle traffic of this magnitude in an on-line system, it is
necessary to organize the messages as efficiently as possible. For example, when a
message is "delivered," instead of making a private copy for each recipient (as is done
with current ARPA message services), the IA system delivers a brief "citation" to the
message. The message itself is stored in two central locations (redundancy for
reliability). The user is then granted read-only access to one of these central copies
when he wishes to read its contents.

0-r design decisions in the IA message service also reflect this concern for
scalability. The organization of user files is also done by a central process (User
Daemon), to compact them as much as possible. In this way, data relevant to many
users can be kept in the same TENEX directory rather than requiring a directory per
user. The daemons are distributed processes that operate across multiple hosts on the
network so that the service can grow in a straightforward way by expanding the subnet
(more nodes and more links) and adding more message processors.

p
INFORMATION AUTOMATION 49

Test Objectives

Perhaps the most important aspect that distinguishes the IA project from previous
message service developments is that it is being designed from the ground up to be
used by the military in a test situation. The data collection and analysis being done by
the Agent to measure the users' activity on the service is highly relevant to the test
objectives of the military (i.e., to understand the impact and utilization of the service).
Additional functional information (such as traffic, patterns, attributes of messages, etc.)
will be collected by the daemon processes as appropriate.

PROGRESS TO DATE

A year ago there were two projects at ISI that were relevant to the current IA
project. Command and Control Message Processing Technology (CCMPT) was identifying
research problems and opportunities for applications for interactive message p-ocessing
services in the military environment. Information Automation (IA) was studying the
architecture for on-line message services for computer-naive military users. In
September 1974, six reports (Refs. 2-7) were published which explained the IA basic
design approach and some of the underlying philosophy. Reference 2 describes the
functional performance for an on-line military message service. References 3,4,5, and 7
describe the user support environment for such a system, including the Command

Language Processor (CLP), the Tutor, the Editor and a methodology for refining
command languages. Reference 6 covers executive system support required. Reflected
in these documents is the information gathered from many discussions with military
communications specialists at installations such as CINCPAC, NAVELEX, NAVCOSSACT,
Naval Research Laboratory, Naval Electronics Laboratory Command, MITRE, Army
Communications Command, Army Materiel Command, Air Force Logistics Command, Air
Force Communications Systems Command, and others. These reports have been useful
in communication with the ARPA research community about the basic problem area and
have served as guides to several ARPA contractors. They have also been a source of
feedback from the military community.

As the plans for conducting an operational test of military message processing on
Oahu began to take shape last fall, CCMPT and IA were merged into a single integrated
program focused on this test. An informal design report was produced for ARPA
review in January. This report descr;bes the detailed design of the IA message service,
including such information as message representation and data formats. The design
called for implementation of the message service on a standard TENEX using a modern
CRT terminal. It was planned that the message access mechanism would be based on
the NLS routines being produced by Stanford Research Institute for use as a tool on
NSW.

Upon approval of thi design in March 1975, work began on implementation of this
message service. Since that time significant portions of the CLP and terminal interface

INFORMATION AUTOMATION 50

have been completed. Delays in production of the NLS routines for NSW forced a
reassessment of their utility to the IA program and in early May plans to use NLS were
dropped.

In the area of the user interface, the project has developed a command language
protocol analysis test to be applied to eventual users of the test message service as
described earlier. The purpose of the analysis is to provide the command language
designer the most representative language of each of several language forms tested.
This command language protocol analysis test has been conducted at ISI using ISI staff
as subjects, in order to evaluate the utility of the approach; Ref. 8 reports the test
findings. An improved version of the test now being developed will be used in testing
the ultimate military users.

In addition to designing the message service, the project has worked with ARPA,
NAVELEX, and CINCPAC to develop tentative plans for operational testing of the
interactive message service and for transferring the technology involved into the hands
of those people within the Navy who can use it to implement future systems. The test
plan involves running approximately 25 terminals connected to a message service on a
dedicated TENEX computer on the ARPANET. This test will be run in a system-high
security mode; that is, terminals will be restricted to a large controlled-access area
(blockhouse) and all users will be cleared to the highest classification of traffic handled.
The message service provided will have a connection to the LDMX at Camp Smith to
provide operational traffic. Efforts are under way to get active participation of
NAVCOSSACT personnel. The intent is to foster the technology transfer required for
optimum impact on the defense community. Effort is continuing to structure a test plan
to insure that major questions about the inpact and utility of interactive services will be
answered definitively.

PROJECT PLAN

The steps ahead for the IA project are to complete the implementation of the
design, test it on friendly users (making appropriate improvements), install it in an
operationel environment, and conduct operational tests. This program requires several
phases of activity, as enumerated below.

Phase I

Phase 1 will implement the Agent and the creation and coordination aspects of the
IA message service, providing a highly interactive, useful service on which to initially
test the concepts underlying the Agent and gain some valuable feedback from military
users on the system's functional performance. This first phase will be implemented
first on a single processor and thus will not test the mechanisms for distributed
processing and backup files.

I

INFORMATION AUTOMATION 51

This coordination service is intended to provide, as output, either standard ARPANET
mail service messages or properly formatted input to AUTODIN. Thus this service will
be useful in a controlled military environment or as a subsystem on TENEX on the
ARPANET. Since the Phase 1 product is a subsystem relying on other TENEX
subsystems for message delivery, reading, and archiving, this message service will not
yet have the single, consistent, homogeneous look to its users that is necessary forI success. However, Phase I will serve as a basis for an initial evaluation of this type of
service for the military. This service will be ready for initial testing in the first quarter
of calendar 1976.

Phase 2

The second phase of development will add to the service the processes associated
with delivery, reception, archiving, and retrieving of traffic. In addition, the system will
be extended to provide backup files and fully distributed daemon processes.

In Phase 2 the Agent development includes implementation of tutorials, more
complete tutor data bases, and more powerful CLP screen control. In addition, it covers
tailoring the service to the test environment and conducting user tests on the service
provided by Phase 1. The Functional Module will be extended to handle the formal
message reception features, providing automatic folder process;ng, delegation, and
alerts. The daemons will be made distributed processes with backup files. Phase 2 is
scheduled for completion by the fourth quarter of 1976.

Subsequent Phases

Phases have been identified for debugging and tuning and for the test itself.
Details of these phases will be established through coordination with the many parties
involved.

- | | | Im | m i mm l i- - .

a

INFORMATION AUTOMATION 52

REFERENCES

1. Ellis, T. 0., Gallenson, L., Heafner, J. F., Melvin, J. T., A Plan for Consolidation
and Automation of Military Telecommunications on Oahu, ISI/RR-73-12, May 1973.

2. Tugender, R., and D. R. Oestreicher, Basic Functional Capabilities for a Military
Message Processing Service, ISI/RR-74-23, May 1975.

3. Rothenberg, J. G., An Intelligent Tutor On-line Documentation and Help for u
Military Message Service, ISI/RR-74-26, May 1975.

4. Heafner, J. F., A Methodology for Selecting and Refining Man-Computer
Languages to Improve Users' Performance, ISI/RR-74-21, September 1974.

5. Abbott, R. J., A Command Language Processor for Flexible interface Design,
ISI/RR-74-24, September 1974.

6. Mandell, R. L., An Executive Design to Support Military Message Processing Under
TENEX, ISI/RR-74-25 (in progress).

7. Rothenberg, J. G., An Editor to Support Mil;iary Message Processing Personnel,
ISI/RR-74-27, June 1975.

8. Heafner, J. F., Protocol Analysis of Man-Computer Languages: Design and
Preliminary Findings, ISI/RR-75-34, July 1975.

z., , .;...
- '

i ' ' ' "ti
'

... . ':' i :i '{< 't ' ' : " " ' ' I

53

NETWORK SECURE COMMUNICATION

Research Staff: Danny Cohen

Thomas L. Boynton
Stephen L. Casner
E. Randolph Cole
James Koda
Robert Parker
Paul Raveling
Dono Van-Mierop

Research Assistant: John K. Kastner

Support Staff: Nancy Dechter

INTRODUCTION

The major objective of ARPA's Network Secure Communication (NSC) project is to
develop and demonstrate the feasibility of secure, high-quality, low-bandwidth,
real-tin, , full-duplex (two-way) digital voice communications over packet-switched
computer communication networks. This kind of communication is a very high priority
military goal for all levels of command and control activities. In 1972 the House Special
Subcommittee on Defense Communications reported that the most prominent equipment
deficiency experienced in Vietnam was the lack of ability to encrypt voice transmissions.
ARPA's NSC project will supply digitized speech which can be secured by existing
encryption devices.

The major goal of this research is to demonstrate a digital high-quality,
low-bandwidth, secure voice handling capability as part of the general military
requirement for worldwide secure voice communication. The project goals are to be
achieved within the context of operational military requirements. However, it is
expected that early use by the military will be or' an experimental basis, t provide an
opportunity to add system improvements unique to the military.

IS's role in ARPA's project is as follows:

" To continue developing the Network Voice Protocol required for communication
of coded speech over a packet-switched network in real time.

" To develop on-line voice conferencing capabilities.

J

NETWORK SECURE COMMUNICATION 54

e To continue implementation of the PDP-11/SPS-41 system for real-time LPC
vocoding.

* To develop dynamic off-line voice systems for storage and retrieval of voice
files.

* To integrate a signals and voice input system, using the Voice Recognition
techniques to be developed by Lincoln Laboratory.

* To integrate an authentication and privacy mechanism to be developed by
Speech Communications Research Laboratory (SCRL).

RESEiRCH APPROACH

Several different problems must be solved in order to advance the overall state of
the art of real-time speech communication. These problems range from acoustic
research into vocoding techniques to networking research for achieving the required
performance.

There is only one criterion for judging such systems, namely, how useful they are
for their users. Therefore, all the relaled efforts always begin wit) the user. First,
the user interface (procedures) were designed, then the system protocols necessary to
support the user interface were designed, then the system to support these protocols
were designed and implemented. This outside-in approach proves itself time and again
for most applications with a man-in-the-loop.

There is a definite correlation between compression and computation. The higher
the compression, the more computation required. Similarly, there is a connection
between quality and compression. The better the quality, the higher the bandwidth
required (assuming the same computation). There is also a three-way relation between
the network-related parameters: bandwidth, delay, and continuity.

One of the purposes of the research is to optimize simultaneously the speech
compression and the network performance required for real-time communication.

ISI conducted network-related research and built real-time systems, integrating
algorithms developed by other ARPA sites, such as Lincoln Laboratory, Speech
Communication Research Laboratory, Stanford Research Institute (SRI), and Bolt, Beranek
& Newman (BBN).

PROJECT GOALS

A prototype of a PDP-I1/SPS-41 digital voice communications system was
implemented at ISI. The Network Secure Communication project at ISI has developed
this system in order to demonstrate the feasibility of secure, high-quality,

NETWORK SECURE COMMUNICATION 55

low-bandwidth digital voice communication in real time over a packet-switched computer
communications network.

Another objective of the NSC project has.been to provide a framework within which
to do digital voice conferencing and to demonstrate a working conferencing system.
This is the logical extension of simple person-to-person voice communication; a
conferencing capability would greatly extend the usefulness of a secure digital voice
communication system.

CURRENT STATUS AND ACCOMPLISHMENTS

The Network Voice Protocol (NVP)

ISI developed the NVP early in 1974. in August 1974 it was successfully used for
high rate real-time communication between ISI and Lincoln Laboratory using CVSD, and
in December a more expanded version of NVP was successfully used for lower rate LPC
communication between Lincoln Laboratory and Culler-Harrison Inc.

NVP has some unique features which make it basically different from other existing
Host-to-Host protocols on the ARPANET.

NVP takes advantage of the properties of human speech, such as silence periods, in
a way which optimizes the communication by reducing the required bandwidth.

NVP is geared for operation in any packet-switched network rather than specifically
designed for the ARPANET.

NVP separates control from data in a way which allows interfacing of encryptior,
devices for data only, without affecting control data which cannot be end-to-end
encrypted. Control issues like timing and order of arrival are separated in a way that
allows future network protocols (at the HOST/IMP level, like the Kahn-Cerf protocol) to
handle them. NVP can use both Type 0 messages (fully controlled, guaranteed,
synchronized, and sorted by the SUBN!ET) and Type 3 messages (which are not).

NVP is designed to trade reliability, if needed, for higher bandwidth and lower
delays. Its operation never depends on the arrival of all the messages.

NVP is designed to separate vocoding-dependent issues from the
vocodin,-independent ones. This allows easy incorporation of new vocoding techniques
as they become available. At present there are NVP interfaces for LPC and CVSD only.
NVP includes its own intial-connection procedure, which is different from, but similar to,
the standard "ICP." Its main objective is negotiation, a stage needed for defining the
format to be used later for data-transfer.

NVP allows systems with different levels of NVP implementation to be compatible if
the set of their mutually implemented features is found to be sufficient.

NETWORK SECURE COMMUNICATION 56

NVP allows any message (control or data) to be lost or delayed without catastrophic
effect on the communication.

NVP is designed to eliminate tne I ssibility that one system can tie up the
resources of another system unnecessarily.

A full description (down to the bit level) of NVP will be found in an ISI research
report (ISI/RR 75-39) to be published soon.

Lirear Prediction Coding (LPC)

Virtually all of the work done by the NSC project has been along critical paths
leading to a low-rate, high-quality, real-time LPC vocoder for digital speech
tr?ismission.

The accomplishments most directly related to LPC are:

1. Creation of an efficient env~ronment in which to create and run higr,;y
complex, dynamic software systems (such as LPC) on the SPS-41.

2. Systems design of the LPC software for both the SPS-41 and the PP-I I,

and implementation of the SPS-41 LPC analysis and ,he entire POP-11
LPC system.

3. Overcoming the d;fficulties which arose from the low rel;ability of the SPS
hardware, and helping the SPS Corporation in debugging their hardware.
This led to our ability to run the SPS system in a relatively reliable
fashion.

The software environment for LPC. Very little software was deiivered for the
SPS-41. What software existed was designed for applications in which a single
program was loaded into the machine and run indefinitely. LPC required the ability to
write many SPS program modules, test them separately, and then integrate them into a
system in which program modules are loaded into the SPS, run to completion, and
dynamically overlaid with the next module needed. The final LPC system requires many
such modules.

The following software was written or modified for this purpose:

9 The SPS-41 assembler (BOXASM) was modified extensively. BOXASM is
written in FORTRAN and runs on the PDP-lO.

* An Automatic Reformatter (ARF) was specified by ISI and written by ISI
and BBN. The purpose of ARF is to transform the output of BOXASM, an
ASCII charactpr iie, into another ASCII character file which is then input
to a PDP-1i assembler or cross-assembler. Thus an SPS program is

NETWORK SECURE CO i,. NICATION 57

transformed into data blocks which can be loaded into PDP-i1 memory for
dynamic loading and execution. ARF is written in FORTRAN for the

PDP-I.

* The PDP-11 cross-assembler MACNI1, which runs on the PDP-10, was
modified extensively for this and other purposes.

9 The operating system ELF provided network access for the PDP- 11
support program for LPC. Because ELF was in an "almost finished" state,
extensive work was required to make it functional for our application. In
particular, considerable time was involved in bringing the virtual memory
capabilities of ELF to operational status.

* An executive program (EXEC) was written to permit dyramic loading and
execution of SPS program modules. The EXEC is an SPS-41 program
which resides permanently in the SPS and controls its operation.
Commands for the EXEC are stored in PDP-11 memory locations, along
with SPS-41 program modules which the EXEC loads into the SPS and
starts. rhe EXEC has facilities to detect when each SFS program module
is done, and can even load the next program module while the present
module is running.

* FT1i/FTiO is a user/server pair of programs which run in the PDP-1I
and PDP-1O, respectively, to transfer files between the two machines
using a 2400 baud line. raie transfer is required because source files are
maintained and assembled on the PDP-lO.

The SPS-41/PDP-11 LPC system. The SPS-41 LPC system consists of an analyzer
written by ISI and a synthesizer written by SRI. The analyzer consists of a series of
seven SPS-41 program modules, and the synthesizer censists of one large program
module. The SPS-41 LPC analysis is made up of four basic modules, some of which are
used more than once in each analysis frame. They are as fo!lows:

9 A windowing, autocorrelation, and normalization module, used once during
coefficient analysis and twice during SIFT pitch extraction

* A matrix inversion module, written at BBN, used once during coefficient
analysis and once during SIFT pitch extraction.

9 A low-pass filter and downsample module for SIFT pitch extraction.

o An inverse filter (convolution) module for SIFT pitch extraction.

Block diagrams of the SPS-41 analysis and synthesis systems are shown in Figures
6.1 and 6.2.

NETWORK SECURE COMMUNICATION 58

CL4

H -4 A

04-4

:z 04J

E-4 H P-4'AP4
040<

0P4
04 P4

C4 5. 4
N0

$4
H

000
pq~

1-4J

P4__E-4_
Z-

-4

w 0o

0 -4 U)

-4~' v z

NETWORK SECURE COMMUNICATION 59

A

-d4
AV

0 IN. -lo

1-4 z a

%0~

xn r-

0. En W En c

NETWORK SECURE COMMUNICATION 60

t

The POP-I I LPC system has the following components (not including the ISI-modif ied
ELF operating system):

* A controller module, which supervises the PDP-11 LPC process and
handles communications to and from the ARPANET via the NVP.

* A transmitter module, which takes parcels of compressed speech data
from the SPS-41 LPC analyzer, encodes them (in the information-theory
sense), and formats them for transmission as ARPANET messages. The
encoding is done by a special subroutine which can be changed to
accommodate various types of vocoders.

* A receiver module, which takes incoming speech data from the ARPANET,
decodes them, and passes them to the SPS-41 LPC synthesizer. The
separate decoding subroutine can also be changed to allow vocoders
other than LPC to be used. This module was written at SRI.

It is important to note that the POP-I 1 LPC system is quite flexible, and not limited
only to LPC; only the encoder and decoder subroutines are specific to IPC. This allows
other vocoding methods to be implemented with relative simplicity.

Continuously-Variable Slope Delta Modulation (CVSD)

Ccntinuously-Variable Slope Delta Modulation (CVSD) is a speech-oriented
bandwidth compression technique which compresses speech to within the range of 10 to
20 Kbps, with less quality than LPC. However, the computation required for CVSD is
only a small fraction of that required for LPC. Therefore, CVSD can be easily
performed by either software or hardware.

Procurement bids for hardware CVSO vocoders were issued in 1974 according to

specifications issued by Lincoln Laboratory, and several units were purchased from
General Atronics. The CVSD hardware devices will play a major rol9 in the initial
conferencing experiments and in other systems which require more than one 'ocoder
per site, t" ce the cost and complexity of any LPC implementation makes the use of
more than one LPC vocoder per site prohibiti,,e.

CVSD softuare network communications experiment. In April 197a, ISI had
implemented an off-line simulation of CVSD on the SPS-41. By June, ISI had designed
and implemented a large and complex CVSD program for the SPS-41 which would allow
on-line communication over the ARPANET. This program was formerly one of the most
complex ever run on the SPS-41, using eight of the machine's sixteen input-output
processor .hnnnels.

A PDP-11 system to handle CVSD communications between the SPS-41 and the
ARPANET was designed and implemented in parallel with the SPS CVSD effort. This
PDP-11 system was designed to run under the ELF operating syw r for the ,rP-1 1.
In early August (within thret: wees atter the necessary ELF facilities were completed

dl

I-I

NETWORK SECURE COMMUNICATION 61

by SCRL) the on-line CVSD system was brought up and experiments in digital speech
communication with Lincoln Laboratory were begun between ISI's SPS-41/PDP-11
system and Lincoin-s FDPiTx-2 system at a data rate of 10,000 bps. The first Network
Voice Protocol (NVP) was used for these experiments. This was the first use of a
packet -switched network for digital voice communication. The experiments were
cnmpleted in October 1974.

CVSD hardware. In January 1975 five of the hardware CVSD devices built by
General Atronics from specifications by Lincoln Laboratory were delivered to ISI. These
devices are capable of CVSD at data rates from 8 Kbps to 18 Kbps. It was immediately
apparent that although the devices themselves performed well, the interface provided to
connect the devices to the PDP-11I would cause an impossible load on the PDP- 11. This

initiated the development of an improved interface, the PB11-A. The PBI1-A allows
serial communication between the PDP-11 and the CVSD boxes, over long cables, making
it possible to use them away from the computer room. It combines the data to (and
from) all the boxes so that the computer is interrupted only once every 16-bit period
for all boxes rather than once for each bit from each box. The PB11-A also solves a
synchronization problem by providing a single clock signal for all the CVSD boxes.

Support Software

A very large portion of the work required for a large system such as LPC or CVSD
is spent in writing support software of all types. The following is a list of the major
items of support software written by IS:

PDP-1O programs.

* ARF: The Automatic Reformatter for SPS-41 programs, as described in the LPC
section.

* FT1O: The PDP-10 side of a file transfer program which transmits files from
PDP-10 disk to PDP-1I disk and vice versa.

0 11COPY: The predecessor of FT1O/FT11. Transfers load modules to the
PDP- 11.

0 MACGEN: A text generator for easy creation and formatting of PDP-11
assembly language (MACRO-i 1) programs.

* DUMP 1I; An ELF core dump formatter.

SPS programs.

* EXEC: The SPS executive described in the LPC section.

" ASFLG: A test program to test the SPS AS flag, which did not work as described

in the documentation.

NETWORK SECURE COMMUNICATION 62

* ECNS: A set of 6 programs to test SPS ECNs. Supplied to all network SPS
users.

o D2AX: A test program for the SPS D-to-A and A-to-D converters.

0 DCVSD: A dual port CVSD program.
o LPC: The SPS implementation of linear predictive coding (LPC) itself. It includes

the following program modules:

- ADDA: The A-to-O and D-to-A handler.

- FILDS: Low pass filter and downsample module.

- HIWAC: Windowed double-precision autocorrelation module for
coefficient analysis.

- SOLVE: Robinson-Levinson recursive matrix solution module for
coefficient analysis.

- AC85: Windowed double-precision autocorrelation module for pitch
analysis.

- SOL4: Robinson-Levinson recursive matrix solution module for pitch

analysis.

- FILT: Inverse filter module for pitch analysis.

- LOAC: A second windowed double-precision autocorrelation module for
pitch analysis.

- PPP: A pitch peak picker.

" XLPC: A test program for testing LPC under controlled conditions.

" CLPC: A second test program for testing LPC under controlled conditions.

P.OS progrants.

" LOAD12, LOADSP, LOADER, LOADNC, and LOADAL: Various loaders for the
PDP- 11.

" FILSTT: A POP-Il file status package.

" FT1 1: The PDP-1I half of the file transfer package.

NETWORK SECURE COMMUNICATION 53

" EXECLD: Loads in the SPS overlay exec from disk (used as a command extension
to SPUD).

" LDSPS: Sets the various channels of the SPS to a predefined set of addresses.

" STCHAN: Starts the SPS (using a particular sequence needed by the SPS).

* INITAL: Sets the various channels of the SPS using LDSPS to start an initialize
program (INIT).

" INIT: Pulses a channel to set high address bits.

" ENCODE: Encodes LPC parcel information into a network message for
transmission.

" SPTEST: Runs ENCODE and DECODE back-to-back so that local tests of LPC may
be made without the ARPA network (used for debugging).

" LPCTBL: Is the table used by ENCODE and DECODE for compression.

ELF programs.

" IKINT: A module which allows the ELF user to field interrupts.

" IKUSBO: A program that allows ELF users to bootstrap load modules into user
space.

* BEEBUG: A powerful debugger which runs in ELF user mode on a Beehive
terminal.

* TCP: A TENEX compatibility package which provides I/0 capabilities for ELF
programs somewhat like those in TENEX.

" MASTER: A mini-executive to cortrol CVSD running under ELF.

ELF modules (components of the ELF operating system) for ELF-Il.

" KDIMP: The IMP driver module.

* KDPR1I: The paper tape reader driver module.

" KDRK05: The RK05 disk driver module.

• KTMP: The programmable clock driver.

" KTML: The line clock driver.

- i ,~~ ____

NETWORK SECURE COMMUNICATION 64

9 KTMI: The real-time clock driver.

* NiO: The ELF network I/0 driver.

ELF modules for ELF-I.

* ELFNIO: The ELF-I network I/0 driver.

* ELFCLK: The ELF-I driver for the PDP-1 I clock.

• ELFTC: ISI modified to add simple FTP features.

* ELFRK: A disk driver for the simple ELF FTP features.

Software extensively modified by IS!.

* MACNI!: The PDP-10 cross-assembler for the PDP-11. Several new features
were implemented and all known bugs fixed.

* IMPTST: The POP-I I IMP interface test exercise program.

* IMPDIA: The PDP-I l IMP interface diagnostic program.

* SPUD: The POP-11 program which exercises single programs running in the
SPS-41.

SPS Status

Hardware debugging. The SPS-41 was installed in late 1973. Programming began
in April 1974, and a two-month period of hardware debugging followed in April and
May. During that period numerous bad components and broken wires and one design
error were found and replaced or corrected. The SPS-41 generally ran dependably
until September.

In September, the ISI SPS-41 was retrofitted for dual-port memory. Dual-port
memory was necessary for LPC in order to allow the PDP-i1 to compute while the
SPS-41 is accessing memory. After work was begun on LPC programs which use the
dual-port memory extensively, a large number of hardware design problems were found
in the area of the dual-port interface.

Throughout the process of debugging the SPS machines, ISI has served as the
central clearinghouse for information about SPS hardware bugs. In addition, ISI people
have spent large amounts of their time to isolate the hardware bugs and write test and
diagnostic programs.

To date ISI has generated many SPS programs which serve as effective diagnostic
and test programs, and made these programs available to other NSC group sites. SRI,

I '[
NETWORK SECURE COMMUNICATION 65

SCRL, BBN, LL, and SDC have used some of these programs as part of their acceptance
tests.

SPS hardware status. At the moment it is not clear how many bugs, if any, remain
in the SPS-41's dual-port interface. SPS conducted a design review during early 1975
and failed to uncover any major problem. However, field debugging mostly by the
designer of the hardware revealed too long signal paths which led to a series of ECNs,
ranging from replacing 74XX ICs by 74HXX and 74SXX ICs, to operation with memory
slowed down to 800 nanosecords (instead of 600 nanoseconds). Up until the issue of
this report, the SPS hardware still was not operating in a reliable mode.

iI

66

SPECIAL PROJECTS

Research Staff: Stephen D. Crocker

Ronald L. Currier
Norton R. Greenfeld
Dono van-Mierop

INTRODUCTION

Since its inception, ISI has undertaken several hardware development efforts in
support of research requirements or to demonstrate a capability for a recognized DoD
application. As reported in Ref. I, one of the most significant of these projects is the
development and use of the Xerox Graphics Printer (XGP), a high-quality document
printing capability in the form of a network terminal.

Two XGP systems have been installed, one at ARPA and one at IS. They provide
high-quality on-line hard copy with proportional spacing of characters according to
width, and use of multiple fonts. This report is an example of the XGP's capabilities.

The hardware components of the XGP systems at both ARPA and ISI consist of a
modified Xerox machine interfaced to a POP-11/40 with 32K words of core and 256K
words of disk, interfaced via a 2400 baud line to the ARPA TIP, which is driven over the
ARPANET by any TENEX system, particularly OFFICE-I, ISI, and ISIB. See Fig. 7.1.

The software components of the XGP system consist of the following:

" A number of character set descriptions which give the
:orrespondence between character codes and arrays of points,

" XOFF, an elaboration of RUNOFF which accepts a text file, performs

filling and format calculations, and creates a file with text and control
codes,

" XLIST, a transmission program which accepts either normal text files
or files produ,ed from XOFF, and transmits them to the PDP-11 over
the ARPANET,

SPECIAL PROJECTS 67

* A PDP-11 program which receives text over the ARPANET, justifies
lines, converts character codes to dot arrays, and drives the XGP.

The software in use was adapted from software written at Carnegie-Mellon University.
The primary changes have been to use ARPANET communication facilities to replace
CMU's hardwire connection between the PDP-1O and the PDP-11, and to use TENEX file
name conventions.

i1Ti

Photo by Marti Coale

Figure 7.1 Xerox Graphtcs Prtnter and tts processor.

.................

SPECIAL PROJECTS 68

SYSTEM OPERATION

Operationally, the process of printing a file on the XGP has three distinct stages:

, Document preparation.
0 XGP preparation.
* Text shipment and printing.

Document Preparation

Text is entered into the computer using any of several text editors. The user may
include within the text various directives to control justification, filling, font changes,
and so forth. If such directives are included, the user must run the program XOFF to
convert his file to a form acceptable to XLIST.

XGP Preparation

The XLIST program is used to communicate with the PDP-11. The XGP has many
parameters, such as page size, margins, and character sets. Currently, XOFF can insert
comrands in the document file to control any of these parameters except the shipping
of character sets. Only some of the character sets are stored permanently on the
PDP-1 I's disk. Character sets required during the printing process which are not on
the disk must be transmitted to the PDP-11 before the document is transmitted.
Transmission of character sets is usually initiated by issuing commands to XLIST.

Text Shipment and Printing

The XLIST function "Perform Print" sends a file to the POP-11 and tells it to start
printing. The program in the PDP-11 copies the document to its disk and then outputs
it to the XGP, converting character codes to point matrices and expanding spaces to
justify lines.

OPERATIONAL EXPERIENCE

The XGP systems have been used extensively since their installation. Although
users are generally able to use these systems effectively, two major defects were
noted: slow speed and difficulty of use.

1

SPECIAL PROJECTS 69

Speed

Under the current design, files are copied completely over the ARPANET to the
PDP-11 disk before printing is started. The printing process is governed by a paper
speed of 0.67 inches per second, so that it takes 16.5 seconds to produce an 11-inch
page. A page of printed output corresponds to about 2000 8-bit characters or 16,000
bits. Thus the printing process operates at about one kilobit-per-second. However,
measurements of the current software show that transmission over the ARPANET
operates in a range 200 to 800 bits-per-second, so that between 55 percent and 85
percent of the total time required to print a document is spent purel% in its transmission
over the network. By comparison, transmission from ISIB to the IS! XGP ove: a direct,
non-network connection tends to operate in the 2000 to 5000 bit-per-second range, so
that not more than 33% of the throughput time is due to transrission. Similarly, file
transfers over the network which do not involve the XGP also operate well in excess of
2000 baud--usually closer to 7000 baud and sometimes at 25,000 baud.

A short investigation was conducted to find the location of the bottleneck. First,
the physical connection between the TIP and the PDP- 11 was increased from 2400 baud
to 9600 baud, but no increase in speed resulted. Second, XLIST's communication
strategy was changed. XLIST presently uses pseudo-teletypes connected to network
connections, and it is known that this scheme is much slower, although more flexible,
than using direct network connections. An experimental version of XLIST which used
direct network connections was tested, and the throughput was raised to just under
1000 bits per second. Finally, the TIP buffer space was doubled and no increase in
throughput resulted.

With the exception of the marginal increase in speed when using direct network
connections, the low throughput does not seem correctable within the present hardware
framework. In particular, the fact that regular file transfers between two hosts run an
order of magnitude faster than our connection through the TIP strongly suggests that
the TIP is incapable of supporting high throughput to a terminal connection. As a
separate confirmation, the TIP is known to allocate only one message at a time on each
of its connections, thus insuring long delays between messages and consequently low
throughput.

SPECIAL PROJECTS 70

Eas of Use

There are two major aspects of the current system design which make it much
harder to use than necessary.

1. Users must command XLIST to send to the PDP-I character seis which are
required during the printing process, although they have already had to
specify thp same information once in the preparation of the text file.

2. Users must wait for the completion of the transmission of their files to
the PDP-11; if they try some other action, the transmission is aborted.
Since the user generally has no further need to interact with the XGP
system once he has started the transmission of his document, it would be
far better to transmit and print files as a background task.

CURRENT ACTIVITIES

On the basis of the accumulated experience and analysis of the problems, work was
undertaken to modify the XGP systems to provide higher throughput and easier use.
The steps being taken are as follows:

1. The connection between the PDP-i I and the TIP is being changed to use
a host interface. Corresponding changes in the software in the PDP-11
will also be made.

2. Printing will be overlapped with transmission to achieve maximum
throughput.

3. Shipment of character sets to the PDP-11 will be performed
automatically.

4. The core allocation scheme is being rev;sed to work with more than two
fonts.

5. Defaults are being established so that the user only has to supply the
name of the file to be printed.

6. A background process much like the LPT server is being developed.

,t

SPECIAL PROJECTS 71

Connection of the PDP- II as a Host

In order to support high-speed network transmission, the hardware of the POP-1I is
being augmented with a host interface and enough memory to support both the ELF
operating system and the XGP program. The total core on each PDP-11 will be 64K
instead of the present 32K. Memory mapping hardware is also being added.

The current software, which is based on CMU's PDP-11 XG? program, will be
replaced by a combination of VM ELF and MIT's XGP program. The VM ELF system will
provide network and disk I/0 and address space management. MIT's XGP software is a
much improved version of CMU's software, providing the same functions of converting
character codes to raster lines suitable for transmttbic;, to the XGP hardware.

Overlap of printing with transmission

Text received from the ARPANET will be buffered onto the disk. Printing will be
initiated when text for a small number of complete pages has been received. If
transmission is slowed after printing has started and the printing process actually
catches up to fhe transmission, printing will be interrupted at the next page boundary.
Printing will b,, resumed when recomputation of the throughput again shows it to be
safe.

In normal cases, throughput of a few kilobits-per-second is all that is required to
keep up with the printing process. Even when TENEX is heavily loaded, it should be
able to accomplish this. Buffering is continuous across file boundaries, so printing
should be continuous as long as there are files to print.

Automation of shipment of character sets

The background TENEX process will accept commands from the text file which ships
character srts to the POP-11. Corresponding changes to XOFF to generate commands
have been made in part and will be finished. Character set names will be standardized,
and the sets resident on the PDP-1 disk will be protected. Other character sets will
be shipped automati .al, before each file is printed, and cleared afterwards.

IJ

SPECIAL PROJECTS 72

Revision of core allocation

The present core allocation scheme in the PDP-I1 prc .m places each new font in
progressively increasing memory locations. Eventually, memory space is exhausted and
the printing process is aborted. Since only two fonts are active at any one time, it is
possible to reuse the space released by previously used fonts. A strategy to reuse the
core space is being designed and implemented.

Establishment of defaults for XLIST and the PDP-I I

Defaults for paper size, margins, character sets, and tab stops will be established so
that line printer-type files will print as much as possible as they would on the printer.

Qteueing of files

The functions of the current XLIST program will be divided into two parts. One part
can interact with the user to accept filenames and dest;nations. It will copy the file into
an XGP-PRINTER directory. The second part will be a set of permanent background
tasks which will attempt to connect to the XGP's and will send files stored in the
XGP-PRINTER directory to the designated XGP. There will be one background task for
each destination XGP accessible to the host.

On the theory that anything queued for printing must eventually be printed, no
priority or interrupt mechanism is being designed, Some thought will be given to this
as we progress, however, since connecting the PDP-i1 as a ';ost would permit
centralized queueing control and status reporting.

SCHEDULE

It is expected that these changes will be complete and the new system operational
in the fall of 1975.

REFERENCE

1. Annual Technical Report, May 1973 - May 1974, USC/Information Sciences
Institute, ISI/SR-74-2, 1974.

73

ARPANET TENEX SERVICE

System Staff: Marion McKinley Jr.

Alan E. Algustyniak
R. Jacque lruninga
George W. Dietrich
Glen W. Gauthier
Donald R. Lovelace
Raymond L. Mason
William H. Moore
Vernon W. Reynolds
Dale S. Russell

Support Staff: Ralph W. Caldwell
Wanda N. Canillas
Dale M. Chase
Oralio E. Carza
Delia A. Heilig
Kyle P. Lemmons
Jack M. Mann
Rennie Simpson
Deborah C. Williams

INTRODUCTION

The ISI ARPANET TENEX service facility is operated as a research and service center
in support of a broad set of ARPA projects. It currently services more than 800 users,
95 percent of whom access the facilities via the ARPANET from locations extending from
London, England to Hawaii. All facilities systems are available to all users, whether they
are connected through the ARPANET either locally or remotely.

The facility consists of four Digital Equipment Corporation (DEC) PDP-lO central
processors (one KI-1O and three KA-lOs), Bolt Beranek and Newman (BBN) virtual
memory paging boxes, large-capacity memories, on-line swapping and file storage, and
associated peripherals (see Figure 8.1). All systems presently run under control of the
TENEX operating system (developed by Bolt Beranek and Newman), which supports a
wide variety of simultaneous users.

HARDWARE

New hardware acquired in the past year as part of a general upgrading effort
includes two additional DEC PDP-1O central processors and BBN virtual memory paging
boxes, an additioial 768K words of Ampex high-speed memory, te, CALCOMP 230 disk

ARPANET TENEX SERVICE 74

drives that have more than doubled the previous on-line swapping and file storage~capabilities, two additional Systems Concepts channels and a new CALCOMP 1040A/345i

magnetic tape system. Figure 8.2 shows the current ISI service facility configuration.
Note that none of the central processors, the KA-lOs nor the K-iO, operate in dual
processor mode. Instead, the main goal of having the several systems is to provide a
significant increase in the availability of the ISI primary machine, system A. Thus if one
of the systems designated as a primary machine crashes, or is down for
hardware/software maintenance or development, then one of the other systems may be
started as a primary machine and service continued after a brief (normally 15 minutes)
interruption to switch the file storage media.

Also included within the TENEX service facility are one BBN H-516 Interface
Message Processor (IMP), one BBN H-316 Terminal Interface Processor (TIP), one DEC
PDP-11/40 and Xerox Graphics Printer (XGPI, one DEC PDP-11/45 and SPS-41 Signal
Processing System (configured as a speech processor), one Multi-Lingual Processor
(MLP-900) and several associated peripheral devices such as disk, drums, memory,
special ISI developed interfaces, TTY's etc.

SOFTWARE

The demand for ISI's computer cycles far exceeded the available supply for most of
the year. Means were needed to reduce the load on the system and to restrict access
of designated users, as specified by ARPA and ISI management. During the year a
concentrated effort was made to insure that all of the ISI TENEX service machines
provided the same level of systems software, i.e., pie slice scheduler, file management,
etc., and that all subsystems were updated to correspond to the latest release. This is
a continuing effort and once accomplished will %;:. easier ongoing software
maintenance of the ISI TENEX service systems. We also have provided load-leveling
across the machine in conjunction with IPTO to assure reasonable respor:;e and greatly
expanded system utilization.

SUPPORT PERSONNEL

To properly support the new load of four complete TENEX systems ISI has hired
additional systems programmers, a complete new staff of computer service engineers in
order to perform our own hardware maintenance, and additional full-time and part-time
operators. ISI presently provides seven-day-a-week, twenty-four-hour-a-day
operator, software, and hardware support of the TENEX service facility. At least one
operator is physically on-site at all iimes, and the systems programmers and computer
service engineers are either physically on-site or are scheduled for one-hour on-call
service. The addition of the computer service engineers to our staff now provides ISI
the capability of performing complete repair, maintenance, and service of all computers
end related peripheral equipment within the faility, thus eiiminaing Z e,, contracts
with several different equipment vendors. See Fig. 8.3.

ARPANET TENEX SERVICE 75

Figure 8 1 Cornposa~e photograph

BM

Vj

Photo by Marti Coale

ICorn postt, photo graph of computer room.

ARP

A S~srem

24560 FtP- 10 woras mmr
,sec

I BEN Poft-r

IS' CU OB SAIC9-cnanr.,4 7-cr

ISACUi0 A1 Tapcrie aap Ori'
KA-100 0 ne10 0'

Controle 2x2zin

2-chaSwdch

itrae79.964,160 PP0

q ,wooa fe soae 12 3

B H-516

j 0 ~ OCAE P.A~~

I~Cnto Protei oca E ca

'j a r -------- --

;sic~~ ~~ CP1 ISAP;-. Z5"

Processor
52,R PO -1 -ei

I A- I

Ftgu-e 8.2 Dtagir-am of ISI ARPANET TENEX serv

ARPANET TENEX SERVIE 76

B Sy $lem

9-channei 7-crannel B A

Tape Drives Tap, Drive Dik C7(TAR.E
0 020 onrol Contro;

0 1 2 3 1S1lDstant

ARPANET 2
79,964,6 IGOPOP Q rtetact.

~IAGTAFE 22MAGTAPE Nord's fesorre
2-channel Sch2-channe! n ~tsvo. zinv

Control Contra;
LLPT

Control

I Data DatassK
Lin~caner Terranals(32) a

D System

0 1273 1 2?3 799416PU

H-516 H-310- virc .64I6OCra-l
IP TIP nd v wrappingr8v L oa

and ~vapp~ngARPANET
0 I 2 3 interface

ARPA.E. ARPANET

SPr eec a I. G I' 2-charnel0

Sy steint Contol Cnii

ARPA~IET AP A

Iner~c Itrface0

POP-I 1/45 PDP- 11/40 .

PDO-1I
XGP n:fc L-S.) BNoeI SPS-41 Signal

Processor

A--DG-P 262,144 POP-IC0 wcrd, r,,mory

gram of PSI ARPANCtr TENEX serince facdty.

ARPANET TENIX SERVICE 77

* I PERFORMANCE STUDIES

During the past year it was observed that as the load average of a particuiar
system increased, the overall performance and response time of the system drastically
deteriorated. Furthermore, upon beirg assigned the task of providing NLS service on
one of our ISIC-KA-TENEX machines, it became quite obvious that (because of the large
working set of pages required by NLS) ISI could not provide high-quality service on this
machine as it was then configured. It was then decided to undertake performance
studie. and measurements on a system configured with twi:e the memory capacity
(512K words) of any existing TENEX system. To facilitate these measurements, both
hardware and software modifications to the former system were required, and an
additional 256K words of memory had to be obtained. Once this was accomplished
performance measurements were made by ISI in-house staff and by members of the NLS
support group at Stanford Research Institute. All performance measurements on this
system were compared to identical measurements made on several other operational
TENEX systems via the ARPANET. After all results were compiled and evaluated (and
after many congratulatory comments from on-line users) it was concluded that a 512K
word TENEX system is the best cost-performance system. ISI presently provides the
only 512K word TENEX service to ARPA network users on system C. It is believed that
this is a first for a DEC KA-lO processor to run an operational system configured with
more than 256K words of memory.

Photo by Marti Coale
Ftgure 8.3 Computer room operator console area.

J

ii F

ARIPANET TENEX SERVICE 78

RELIABILITY

To provide required hardware/software preventive and/or corrective maintenance
of the equipment, ISI as in the past will continue scheduling each of the TENEX systems
as 'out of service" (unavailable to users) for seven contiguous hours each week. The
remaining 161 hours of each week are intended to be devoted entirely (100) to user
service. It is expected that the actual long-term up-time attained during the past year
will continue to be greater than 98% (on an 161-hour-per-week basis) for each system.

LOCAL PROJECT SUPPORT

The TENEX facility has been utilized extensive:- in supp:)rt of local projects. The
saff makes use of all of the available standard subsystems (e.g., editors, compilers,
assemblers, and utilities). Additionally, staff members have written subsystems and
utilities in support of their own projects. The facility also supports fess frequently
used subsystems at the special request of users (e.g., PDP-il cross assemblers and the
DECUS Scientific Subroutine Package).

Monitor modifications to support the MLP-900 have been developed and verified.
These modifications allow basic processor-to-processor communication tht'ough both the
input/output (1/0) and memory buses.

-II

1,A

"I

79

PUBLICATIONS

Anderson, Robert HR, Programmable Automation: The Future of Computers in

Manufacturing, ISI/RR-73-2, March 1973; also appeared in Datamation, Vol. 18,
No. 12, December 1972, pp. 46-52.

--- , and Nake M. Kamrany, Advanced Computer-based Manufaccuring Systems for
Defense Needs, ISI/RR-73-10, September 1973.

Baizer, Robert M., Automatic Programming, ISI/RR-73-1 (draft only).

--- , Human Use of World Knowledge, ISI/RR-73-7, March 1974.

--- , Language-Independent Programmer's Interface, ISI/RR-73-15, March 1974;
also appeared in AFIPS Conference Proceedings, Vol. 43, AFIPS Press, Montvale,
N. J., 1974.

--- , Norton R. Greenfeld, Martin J. Kay, William C. Mann, Walter R. Ryder, David
Wiczynski, and Albert L. Zobrist, Domain-Independent Automatic Programming,

ISI/RR-73-14, March 1974; also appeared in Proceedings of the International

Federation of Information Processing Cr ngress, 1974.

Bisbey, Richard L., and Gerald J. Popek, Encapsulation: An Approach to

Operating System Security, ISI/RR-73-17, December 1973.

Ellis, Thomas 0., Louis Gallenson, John F. Heafner, and John T. Melvin, A Plan for
Consolidation and Automation of Military Telecommunications o.1 Oahu,

ISI/RR-73-12, June 1973.

Kamrany, Nake M., A Preliminary Analysis of the Economic Impact of

Programmable Automation Upon Discrete Manufacturing Products, ISI/RR-73-4,

October 1973.

London, Ralph L., Shigeru Igarashi, and David C. Luckham, Automatic Program

i'erification 1: A Logical Basis and Its Implementation, ISI/RR-73-11, May
1973; also appeared in Artificial Intelligence Memo 2000, Stanford University,
May 1973.

j

80

Qestreicher, Donald R.: A Microprogramming Language for thme MI.P-900,111 ISI/RR-73-8, June 1973; also appeared in the Proceedings of the ACM Sigplan
Signiicro Interf ace Meeting, New York, May 30-June 1, 1973.

Richardson, Leroy, PRIM Overview, ISI/RR-74-19, February 1974.

Heafner, John F., A Methodology for Selecting and Refining Man-Computer

Languages to Improve User's Performance, lSl/RR-74-21, September 1974.

Good, Donald I., Ralph L. London, and W. W. Bledsoe, An Interactive Program

Verification System, ISI/RR-74-22, November 1974.

Tugender, Ronald, and Donald R. Oestreicher, Basic Functional Capabilitie. for a

Military Message Processing Service, lSI/RR-74-23, May 1975.

Abbott, Russell J., A Command Language Processor for flexible Interface Design,

ISI/RR-74-24, February 1975.

Rothenberg, Jeff, An Intelligent Tutor. On-Line Documentation and Help for A

Military Message Service, lSI/RR-74-26, May 1975.

--,An Editor to Support Military Message Processing Personnel, ISl/RR-74-27,

June 1975.

Carlstedt, Jim, Richard L. Bisbey 11, and Gerald J. Popo'k, Pattern- Directed

Protection Evaluation, ISI/RR-75-31, June 1975.

Heafner, John F., Protocol Analysis of Mant-Computer Languages: Design and

Prlmnr Findings, ISI/RR-75-34, July 1975.

TECHNICAL MANUALS AND SPECIAL REPORTS

Annual Technical Report, Hay 1972 - May 1973, ISI/SR-73-1, September 1973.

A Research Program in thme Field of Computer Technology, AInnuial I .2chnical

Report, May 1973 - May 1974, ISI/SR-74-2, July 1974.

Gallenson, Louis, Joel Goldberg, Ray Mason, Donald Qestreicher, Leroy Richardson,

PRIM User's Manual, ISI/TM-75-1, April 1975. *

I!
81

COLLOQUIA

July John Pickens, The PLATO System and the PLATO Terminal

August Bill Mann, ISI, Multi-Stream Editor Design

Jim Levin, UCSD, Aspects of Diagnosis

John Burger, SDC, Conceptual Processing of English

Richard Hart, University of Connecticut, A System for Answering the
Questions of Beginning Lisp Students

Warren Teitelman, PARC, New Adoitions to Lisp

September Bob Balzer, ISi, AP at IBM

October Larry Fagan, ISI, Modifications to the Verification System

Ron Tugender, ISI, XED...Or Happiness is a Warm Text Editor That
Cares

December Jim King, IBM, A New Approach to Program Testing

January Carl Hewitt, MIT, The Programmer's Apprentice

Sue Gerhart, Duke University, Test Data Selection

J. T. Schwartz, Cour ant Institute, Au omatic Data Structure Choice

Jerry Shelton, University of Wisconsin, A Pract:cal Model for

Programming Language Semantics

Jim Levin, ISI, Fisher's Theory of Control Structure

82

February Jim 'Carlisle, ISI, Human Communication in Teleconferencing

Jim Moore, ISI, Systematic Methods for Observing and Encoding
Group Interactions

Jim Carlisle, ISI, Applications and Taxonomy of Teleconferencing

March Steven Boles, IBM, Speech Filing Systems

John Gould, IBM, Psychological Studying of Program Querying by

Non-Programmers

Larry Roberts, Telnet, Telnet's Pans

Eric J. Neuhold, University of Stuttgart, On Correctness Proofs for

Command Programs

Giorgio P. Ingargtola, Caltech, Towards a System with Specialized
Prograrnmng Knowledge

Jerome Elkind, PARC, Review of Current PARC Research

Larry Miller, iSI, Mathematical Pattern Recognition

David Patterson, UCLA, Verification of Microprograms

April Jim Carlisle, ISl, Human Communication in Teleconferencing

Dave Fisher, Instiu'e for Defense Analyses, A Time Linear Bounded
Work Space Copying Algornihm/Current Progress on the Defintion
of a Common DoD Higher Orcier Language

Richard Johnsson, Carneie-Meion University, Register Allocation
Optimization

Phillip Mason, Carnegie-Meton University, The Design of Proora,,,s
Asynchronous Multiprocessors

Axel Van Lamsweerde, MBLE Research Labs, Brussels, Correctness of
Parallel Processes

X-.,""

83

May Hanan Samet, Stanford Al Lab, Automatically Proving the Correctness
of Optimized Code

Bill Mann, ISI, Recent Progress of Dialogue Modellhng
Mark Stickel, Carnegie Mellon University, Incompleteness Aspects of

Artifical Intelligence Languages

Bill Mann, ISI, Why Things are So Bad for the Computer-Naive User

Stephen N. Zilles, IBM, Data Algebra

James Griestner, IBM Yorktown Heights, The SCRATCHPAD System
for Symbolic Mathematical Con putation

June Bill Wulf, Carnegie-Mellon University, The ALPHARD Programming
Language

Dave Musser, ISI, An Algebraic Evaluator for Conditional Expressions

''1

II

__-- - .-. " . -

84

DOCTORAL THESES

Completed

John F. Heafner, Design of Application-oriented Languages by Protocal Anclysis, 1975

Robert W. Lingard, A Representation for S(aantic Information Within an
Jnference-making Computer Program, 1975

David Wilczynski, A Process Elaboration Formalism for Program Writing and /1nalysis,

1975

Martin D. Yonke, A Knowledgeable Language-Independent System for Program

Construction and Modification, 1975

In Progress

Donald S. Lynn, Automatic Program Verification: Compiler Proofs

;I

I
'1

"C.:'- .

